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PREFACE

The Cooperative Research Centre (CRC) for Catchment Hydrology’s research program
‘Flood Hydrology’ has the overall objective:

To improve methods for estimating flood risk and the reliability of flood forecasting,
and advance the understanding of catchment similarity and regional behaviour.

The issues of catchment similarity and regional behaviour are specifically dealt with in CRC
Project D2 ‘Regionalisation and Scaling of Hydrologic Data’.

This report by Bryson Bates from the CSIRO Division of Water Resources represents the first
phase of Project D2. It provides a state of the art survey of regionalisation techniques and
presents recommendations for further research, some of which will be investigated in the next
phase. A review of scaling theory by other researchers within Project D2 will appear as a
separate report.

The ultimate aim is to develop and test new methodologies for transferring hydrologic
information from small to large areas (scaling) and from one region to another
(regionalisation). This report is an important first step in achieving that goal.

Russell Mein
Program Leader, Flood Hydrology
Cooperative Research Centre for Catchment Hydrology



ABSTRACT

Hydrologic research within Australia has produced a large body of information derived from
field experiments ranging in area from plot size to that of a small catchment. Land and water
resource managers need to apply this knowledge to large river basins but existing techniques
for extrapolation are incomplete and inconsistent with one another. The development of a set
of coherent techniques for scaling and regionalisation would reduce the need for new and
costly experiments and reduce the cost of data collection.

This report presents the results of a review of regionalisation methods as the first phase of a
project to develop improved scaling and regionalisation techniques for use by Australian land
and water resource management agencies. (A review of scaling theory will appear as a
separate report.) The report focuses on three major areas: (1) regional flood frequency; (2)
regionalisation of rainfall-runoff model parameters; and (3) low flow estimation. Two
problems common to ali three areas are the identification of homogeneous hydrological
regions and the functional form of relationships between hydrological variables and
catchment characteristics. Previous work on these issues is incomplete. Extensive work on
the application of the multiscaling theory of Gupta and Waymire and the L-moments/index
flood method of Hosking and Wallis to regional flood frequency analysis, and parameter
estimation for rainfall-runoff models, is warranted.

The next phase of the project will involve the development and testing of new methodologies
for regional flood frequency analysis and the regionalisation of rainfall-runoff model
parameters for ungauged catchments. Issues peculiar to low flow estimation can be left for
future research efforts.
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SUMMARY

This report represents the first phase of the CRC for Catchment Hydrology’s Project D2,
‘Regionalisation and Scaling of Hydrologic Data’. It is a review of regionalisation techniques
for flood frequency, rainfall-runoff model parameters, and low flow estimation. These are the
areas of most interest to practitioners.

The first part of the review examines methods for regional flood frequency analysis (RFFA).
RFFA uses data from several gauged sites which have been pooled (or combined) to form a
‘homogeneous’ hydrological region to obtain flood quantile estimates at a site within that
region. It was concluded that the application of the multiscaling theory of Gupta and
Waymire and the coupled L-moments/index flood method of Hosking and Wallis to RFFA
could be advantageous. Nevertheless, two areas deserving considerable attention are
delineation of homogeneous regions and the identification of the functional form of the
relationships between the index flood or flood quantiles and catchment characteristics.

The second part examines the regionalisation of rainfall-runoff model parameters. Such a
regionalisation allows the estimation of design flood hydrographs for the sizing of hydraulic
structures and water yield from ungauged catchments. It was concluded that further work on
parameter estimation for rainfall-runoff models is warranted despite the intensive research
efforts of the past. The issues of delineating homogeneous regions and identifying the
functional form of the relationships between model parameters and catchment characteristics
are of critical importance. Also, it is noted that the estimation of water yield from ungauged
catchments is not a straight forward task since many of these catchments do not have
sufficient rainfall and other climatic records for a modelling study. This problem can be
addressed by the use of stochastic weather generators which provide long sequences of
synthetic climatic data. However, it was found that previous work on stochastic weather
generators for Australian climatic conditions is highly fragmented and incomplete. Thus
further work on stochastic weather modelling is justified.

The third part examines methods for low flow estimation. In this field, regionalisation
usually takes the form of regional estimation equations linking low flow measures and
statistics with catchment characteristics. The information obtained from these equations is
useful in reservoir design, the licensing of stream abstractions, environmental studies, and
water quality management. Again, the issues of delineating homogeneous regions and
identifying the functional form of the relationships between model parameters and catchment
characteristics were found to be of critical importance. However, it was also noted that
existing regionalisation methods often rely on the estimation of a limited number of low flow
quantiles and parametric distributional assumptions. Such approaches discard valuable
information on the low flow regimes of streams and further thought should be given to
developing methods that preserve this information.

High priority should be given to the issues of delineating homogeneous regions and
identifying the functional form of the relationships linking the index flood, flood quantiles,
rainfall-runoff model parameters, and low flow measures and statistics to catchment
characteristics. For this work to take place, however, it will be necessary to address the
discrepancies between the index flood and multiscaling theories of regional flood frequency
analysis and several issues associated with the parameter estimation in rainfall-runoff models.

iii



1 INTRODUCTION
1.1 Purpose of Report

The purpose of this report is to ascertain the current state of research and practice in the
regionalisation of hydrologic data. The report is the first phase of a project to develop and
test accurate and coherent techniques for scaling and regionalisation. The next phase of the
project will involve the development and testing of new methodologies for practical
problems. The project is one of four under Program D of the research program of the
Cooperative Research Centre for Catchment Hydrology.

The objectives of this review are:

. to survey the literature to identify the latest research developments in the
regionalisation of hydrologic data;

. to compare Australian practice with these developments;

o to identify areas where further research and development are needed in the
short and intermediate term, and

. to provide a useful resource to others working in the field of regionalisation.

1.2  Background

One of the most common problems in the sizing of minor hydraulic structures such as
detention basins and farm dams, and the waterway areas for culverts and bridges, is the
estimation of a design flood for sites at which no observed rainfall and/or runoff data are
available. A popular solution to this problem is the use of regional estimation equations for
deriving design flood peaks or design flood hydrographs. These equations allow the user to
transfer information from a number of ‘similar’ gauged sites to the design site. The cost of
the construction of these structures to the Australian taxpayer is of the order of $300 million
per annum. A similar approach is often used by water resource planners to estimate low flow
statistics for and water yield from ungauged catchments. These estimates provide useful
information for reservoir design, licensing stream abstractions, environmental studies, and
managing water quality.

Although regional estimation equations for a number of areas worldwide have been available
for some time, there is a general awareness that these methods are incomplete, inconsistent
and, in many cases, inaccurate and outdated. This must lead to unwarranted expenditures on
engineering structures due to under- or over-design, and the formulation of management or
planning policies that are based on questionable information.

Part of the focus of Project D2 will be on the development and testing of new technologies for
regionalisation. This will include investigation of recent technologies developed overseas
and the development of new methods during the course of the project. The products of this
research will be in a form suitable for immediate application by practitioners. The remaining
component of the project will focus on the development and use of techniques for
extrapolating hydrologic data from one part of a catchment to the whole catchment. These



techniques are called ‘scaling’ methods. This subject area will be covered in a separate
report.

1.3  Structure of the Report

The report consists of three parts. The first reviews the literature on regional flood frequency
analysis and the estimation of flood quantiles at ungauged sites. This is the area that has
received the most attention in the literature and has many aspects in common with other types
of regionalisation analyses. The second part focuses on the regionalisation of rainfall-runoff
model parameter estimates. Discrete flood event models, and conceptual rainfall-runoff
models that provide a continuous simulation of catchment runoff, are considered. Important
secondary issues relevant to the estimation of water yield from ungauged catchments are also
discussed. The third part covers low flow estimation for gauged and ungauged catchments.
This area has received the least attention in the literature and is one of major importance to
Australian water resource and aquatic ecosystem planners and managers.



2 REGIONAL FLOOD FREQUENCY ANALYSIS
2.1  Introduction
2.1.1 At-site flood frequency analysis

Flood frequency analysis is the study of the frequency of occurrence of high water levels in
streams. Statistical methods are generally used as they acknowledge the existence of the
uncertainty involved in quantifying the physical processes that determine flood magnitude.
These techniques may include data-intensive methods involving the fitting of probability
distributions or related quantities to flood peak discharges. They may also include the
coupling of a probabilistic rainfall model with either a deterministic or a probabilistic
catchment model to derive a flood frequency distribution. Here the models are usually simple
enough to require little or no calibration and to allow the distribution to be derived in an
analytical form [Moughamian et al., 1987].

This part of the review focuses on the analysis of peak discharges. Most flood frequency
techniques are based on the use of annual flood series which contain the highest instantaneous
discharge recorded in each year of the record. The remainder are based on the partial flood
series which is comprised of all flood peaks over a selected threshold regardless of the
number of such floods occurring each year.

Let the random variable Q denote the magnitude of the largest flood discharge which occurs
in a year at a given site. The probability distribution of @ can be specified by its cumulative
distribution function:

Folg) = P[@<4] ' : (2-1)
where Fp(q) is the probability of the event that Q is at less than or equal to g.

The inverse function g(F) is the quantile function of the probability distribution. It expresses
the flood magnitude in terms of its nonexceedance probability F. Let Qr denote the flood
quantile of annual exceedance probability (AEP) of 1 in 7 (or of average recurrence interval,
ARI, of T years) which is the flood magnitude which has a probability 1/T of being exceeded
in a year. Thus

Or = g(l-UD | 22)
or
Fo(Op) = 1-UT (2-3)

The objectives of flood frequency analysis are to estimate flood quantiles for a selected AEP
or a range of AEPs or to estimate the AEP for a given Q. Potter and Lettenmaier [1990] note
that there are three major problems in practice. First, the parent distribution for the quantiles
is not known and cannot necessarily be assumed on theoretical grounds. Second, there is
usually a lack of sufficient data to enable accurate estimation of the quantiles for the small
AEPs that are of primary concern in the design of hydraulic structures. Here the quantile
estimates can be quite sensitive to the assumed form of the parent distribution. Third, floods



may be generated by different physical mechanisms such as snowmelt and rainfall {see, e.g.,
Waylen and Woo, 1982). A fourth problem is that floods may be generated by different
hydrologic mechanisms depending on the time history of rainfall. This can be particularly
important for large, uncommon floods.

2.1.2 Regional flood frequency analysis

Regional flood frequency analysis (RFFA) uses scaled data from several gauged sites which
have been pooled to form a region to obtain scaled flood quantile estimates for a hypothetical
site within that region. In effect, it is an attempt to compensate for insufficient temporal
characterisation of large flood behaviour by exploiting the spatial coherence of hydrological
variables effectively to increase the sample size for individual sites [Lettenmaier and Potter,
1985: Cunnane, 1988; Burn, 1990a, b]. Another possible source of supplemental information
is knowledge about large floods that occurred prior to the gauged (or systematic) flood record.
Jin and Stedinger [1989] note that such historical information can be of value when
estimating at-site flood quantiles but that its use in a regional flood frequency context is an
area of dispute [see, e.g. Hosking and Wallis, 1986]. Guo and Cunnane [1991] suggest that
this dispute may have resulted from the selection of different data censoring methods.

RFFA can be used to enhance the reliability of quantile estimates at gauged sites or to obtain
quantile estimates at ungauged sites. In practice, the second design situation is the most
common.

Potter [1987] and Cunnane [1988] note that the performance of all regionalisation techniques
is dependent upon distributional assumptions, the degree of spatial heterogeneity, and inter-
site dependence of flood data.

Some RFFA methods assume explicitly that the flood frequency behaviour of the gauge sites
within the region is homogeneous with respect to relevant catchment variables. The
questions of what constitutes homogeneity and how can it be best identified are problematic
and have been the subject of principally statistically-based research. Cunnane [1988] notes
that even with regionalisation techniques that make no explicit assumptions about
homogeneity, it must be expected the gains in using regional rather than at-site estimation
will be greater if the region of interest is homogeneous. It has also been shown that at-site
estimates of flood quantiles can be preferable to estimates obtained from RFFA in the
presence of extreme regional heterogeneity [Kuczera, 1982a; Lettenmaier and Porter, 1985].
This is particularly true for a catchment whose behaviour differs most from the ‘average’
catchment of the region {Cunnane, 1988].

The following notation and definitions will apply throughout the subsections to follow. Let
{Qwi=1,2,...,N;j=1,2, ..., M} be the annual discharge maxima at M gauged sites with a
total period of record given by

M
L = 2N, (2-4)
j=1



For any site j, it is assumed that {Q;, i = 1, 2, ..., N;} is a random sample from some parent
population. Cunnane [1988] notes that most RFFA methods involve standardisation of the
discharge data:

X,j = (Q,,J - aj)/b,- (2-5)

where a; and b; are the location and scale statistics of the sample. Using the regional
homogeneity assumption, the random variable X is assumed to have a common probability
distribution with identical parameter values at all sites within the region of interest. This is an
important assumption for, as Dooge {1986] states: ...no amount of statistical refinement can
overcome the disadvantage of not knowing the frequency distribution’.

2.1.3 Index flood method

If the standardisation is of the form X = Q/b where b is an index of the overall flood
magnitude on a catchment, the technique is referred to as an Index Flood method. The key
concept of this method is that the distributions of floods at sites within a given region are the
same except for scale parameter b which reflects the size, rainfall, and runoff characteristics
of each catchment. That is, it is assumed that all moments of order higher than one are
identical after correction for scale. Recent work [Smith, 1992; Gupta and Dawdy, 1994;
Gupta et al., 1994] indicates that hydro-climatic catchment dynamics are such that the
underlying premise of a regional parent distribution may be invalid even though statistical
tests for more frequent floods may not cause the hypothesis to be rejected [Kuczera, 1982b].
The absence of a physically supportable, uniform general and scalable distribution would
restrict severely the use of an index flood scheme. General regressions of the form used by
the U.S. Geological Survey for specific AEP magnitudes [see, e.g., Riggs, 1973] do not come
from the same parent (see Section 2.7.1).

Typically the index flood is taken as the mean of Q although any location parameter of the
probability distribution can be used. Hosking and Wallis [1991] suggest the possible use of
the median and trimmed means. Smith [1989] used the 90th percentile. When the index
flood is the mean, Q, X is a ratio of two random variables with the properties [Greis, 1983;
Cunnane, 1988]:

ElX] = 1 \ (2-6a)
ox = CO) (26b)
& = 8o (2-6¢)

where E[-] is the expectation operator, and &, C,, and g are the standard deviation and
coefficients of variation and skewness, respectively. For small samples, the distribution of X
can be quite different in form to that of Q and the variance of the mean makes a large

contribution to the sampling variance of the estimated X quantiles [Stedinger, 1983; Cunnane,
1988].

Within Index Flood methods, the X; = Qy/b; are the basis for estimating X7, the regional
growth factor of AEP 1 in T or ARI of T years. The regional growth factors for different



values of T define a dimensionless regional frequency distribution common to all sites in a
region and hence X7 is the 100(1 — /)% quantile of this distribution [Hosking and Wallis,
1991]. It is usually assumed that the distribution of Xr is known apart from the distribution
parameters 6 (k = 1, ..., p). These parameters are estimated separately at each gauge site and

combined to give regxonal estimates 0( ) Hosking and Wallis [1990, 1993] use a weighted
average estimate:

M
6y = 2 w8 [ 2w, 27)
i=1

where BU ) denotes the site j estimate of @, and w; = N; are the weights. Stedinger et al.

[1993] note that this choice of weights may give undue influence to those sites with much
longer periods of record. They suggest that a better choice is:

NN
. IR 2-8)
J Nj+Ng

where Ng = 25. (Stedinger et al. {1993] note that the optimal value of Ny is dependent on the

heterogeneity of the region.) The dimensionless regional frequency curve and the éEcR)s are
used to determine Xr. The 100(1 — 1/7)% quantile of the flood distribution is given by

or = X710 | 29)

If the goal is to improve the reliability of the estimate of Qr at gauged site j, the sample mean:

1 N
= _&_g‘ (210)

is used in (2:9). For an ungauged site within the region of interest, Q is estimated using
regional information (see Section 2.7.1).

If the X; are treated as if they form a single random sample of size L from a common X parent
population, the RFFA procedure is classified as a station year method [see, e.g., Carrigan,
1971; Hjalmarson and Thomas, 1992]. Here the X-T relationship of this population can be
estimated from the sample by any chosen method. Cunnane [1988] notes that these methods
may be described as a regional pooling of data as distinct from other methods which involve
the regionat averaging of data or the statistics of those data. Station year methods may lead to
bias at large ARIs because of their failure to consider inter-site dependence; Cunnane [1938]
cites the work of Hosking [1987] which suggests that this bias may not be excessive for
annual flood series in England. Cunnane also notes that although regional averaging methods
do not suffer bias as a result of inter-site correlation the standard error of the quantile
estimates may be adversely affected by it.



2.2  Distributional Choices for At-site Quantile Estimation

While the focus of this report is the regionalisation problem it must be emphasised that an at-
site estimator is a basic component of every RFFA procedure [Potter, 1987]. Distributional
choices for at-site estimators have included the: log Pearson Type HI (LP3); generalised
extreme value (GEV) or one of its special cases, the extreme value types 1, 2, 3 (EV1, EV2,
EV3); power normal (PN); two-component extreme value (TCEV); the generalised Pareto
distribution; and Wakeby (WAK) distributions.

There is no known physical basis for choosing a flood frequency distribution. In some
countries an arbitrary decision has been made to achieve uniformity between different design
agencies. For example, the Institution of Engineers Australia [/EA, 1987] and the Interagency
Advisory Committee on Water Data [JACWD, 1982] recommended the LP3 distribution for
general use in Australia and United States, respectively. This distribution and methods for
estimating its parameters have been scrutinised and criticised by many. A summary of this
work prior to 1987 is given by JEA [1987] and need not be repeated here. Work since the mid
1980s has indicated that reassessment of the use of the LP3 distribution for practical flood
design is overdue [Wallis and Wood, 1985; Potter and Lettenmaier, 1990].

Lesser known are the TCEV and PN distributions. Waylen and Woo [1982] and Rossi et al.
{1984] have proposed the four-parameter TCEV distribution for modelling annual flood
series. They assumed that annual flood series arise from two independently distributed EV1
components representing two different storm mechanisms that give rise to different flood
characteristics. (Thus the cumulative distribution function for the TCEV distribution is
defined by the product of two EVI cumulative distribution functions.) The TCEV
distribution has been successfully applied to Canadian data [Waylen and Woo, 1982], Italian
data [Rossi et al., 1984], and United Kingdom data [Beran et al., 1986]. The PN distribution
was suggested for use in flood frequency analysis by Chander et al. [1978]. This approach
applies the one-parameter power transformation proposed by Box and Cox [1964] to the
annual flood series and assumes that the transformed series is independently and normally
distributed. It has been successfully applied to Australian data [Kuczera, 1983a; Ashkanasy,
1985].

Smith [1987] proposed a generalised Pareto procedure for estimating the quantiles of the
upper tail of the annual flood series and applied it to a data set from the Potomac River.
Smith used only the largest 10-20% of the flood peaks. He found that severe censoring yields
very different quantile estimates from those obtained from moderate censoring. Standard
errors of quantile estimates for ARIs of the order of 1,000 to 10,000 years were of the same
order of magnitude as the estimates, suggesting that these estimates are of no value.

The distributions that have aroused the most interest as possible alternatives to the LP3 are
the GEV and WAK distributions. The Natural Environment Research Council [NERC, 1975]
has endorsed the GEV distribution for flood frequency analyses in the United Kingdom.
Houghton [1978] introduced the five-parameter WAK distribution which has the ability to
mimic the behaviour of most of the conventional distributions used in hydrology. Both
distributions have been found to perform well when compared with other candidates [e.g.,
Hosking et al., 1985a; Wallis and Wood, 1985, Lettenmaier et al., 1987; Arnell and Gabriele,
1988: Potter and Lettenmaier, 1990]. While the performance of the WAK distribution



appears to be remarkable given its lack of parsimony of parameters, it is only useful in
regional rather than at-site applications.

The WAK and TCEV distributions can capture some of the separation effect observed by
Matalas et al. [1975]. This effect refers to the differences which may appear between
samples of synthetic and natural streamflow data when the standard deviation of skew is
plotted against the mean skew for regional data. Generally, the natural data display a larger
standard deviation of skew than the synthetic data suggesting that real skews are larger than
those of most conventional distributions. Work by Dawdy and Gupta [D.R. Dawdy, pers.
comm., 1994] shows that this ‘separation’ may be an artefact of earlier non-physics based
statistical analysis.

Adamowski [1985, 1989]) and Adamowski and Feluch [1990] have advocated the use of
nonparametric density estimation. This approach removes the need for a priori selection of a
probability density function and can produce a better fit to observed flood data with a highly
skewed density and a long upper tail than parametric methods. However, it implies a very
small probability in extrapolation beyond the largest gauged flood. The use of nonparametric
methods appears to have attracted little attention elsewhere.

23 Regional Homogeneity
2.3.1 General concepts

Many RFFA methods entail the pooling of data from gauged sites within a defined physical
region. The definition of this region depends on which aspect of the behaviour of flood
frequency is considered to be homogeneous. Potter [1987] states that this is the greatest
challenge in applying regionalisation techniques since it requires the ability to discern
whether anomalous flood statistics are due to sampling variability or to populatlon dlfferences
caused by floods that do not conform with the assumed distribution.

Gabriele and Arnell [1991] note that while the accuracy of a regionalisation approach will
decline as regional heterogeneity increases, the performance of regional estimators will also
decline as the size of the region is decreased. There does not appear to be any work on the
minimum number of stations that is required to define a region adequately and the tolerable
level of associated variations in at-site record lengths. However, the Monte Carlo
experiments of Hosking and Wallis [1988] suggest that as the number of sites M within a
region is increased, there comes a point after which further increases in M yield little
improvement in the accuracy of quantile estimates. This point is reached more quickly when
inter-site dependence is present. Overall, there appears to be little improvement for M > 20.

Little of the published literature examines the physical causes for changes in apparent flood
populations in a geographic region. Wolff and Burges [1994] have demonstrated the subtle
influence that a relatively short reach of river channel and floodplain may have on
populations of flood peaks as flood hydrographs propagate down the channel. The population
for an upstream gauge is different to that at a downstream location in the same catchment.
This suggests that the location within a catchment. of the gauged site is important when the
data are used in a regional statistical scheme.



Cunnane [1988] states that the identification of homogeneous regions is necessarily based on
statistical methods and that the ability of these methods to assign sites to regions or to detect
unusual sites within a region is low. He attributes this to the moderate amounts of flood
frequency data that are available. Data limitations (quantity and quality) also affect other
types of hydrological regionalisation (e.g., the regionalisation of rainfall-runoff parameters).

2.3.2 C(Classification techniques and tests for regional homogeneity

The classification techniques that have been used to delineate homogeneous hydrological
regions include:

. analysis of regression residuals [e.g., NERC, 1975; Tasker 1982al;

. cluster analysis [e.g., Mosley, 1981; Tasker, 1982b; Acreman and Sinclair,
1986; Wiltshire, 1986; Burn, 1989; Hughes and James, 198%; Roald, 1989,
Nathan and McMahon, 1990; Burn and Boorman, 1993];

. principal component analysis [e.g., Blake et al., 1970, Hawley and McCuen,
1982; Burn, 1988; Nathan and McMahon, 1990];

. principal co-ordinate analysis [e.g., Hughes, 1987, Laut et al., 1983; Cook et
al., 1988];

. factor analysis [e.g., Abrahams, 1972; White, 1975];
. canonical correlation analysis [e.g., Decoursey, 1973; Cavadias, 1990];
. discriminant analysis [e.g., Decoursey, 1973; Waylen and Woo, 1984]; and

. analysis of shapes of probability density functions [Gingras and Adamowski,
1993].

None of these statistical methods is inherently superior to its competitors and each has
subjective elements and limitations. For example, the method of residuals depends highly on
selection of the regression model and explanatory variables. Errors in these selection
processes can be difficult to detect even when using the strongest multiple linear regression
tools [see, e.g., Bates and Sumner, 1991]. Similarly, most clustering techniques make
implicit or subjective assumptions about the type of structure present in the data. They
depend also on measurement scale.

An important consideration is whether regions should be constrained to be geographically
contiguous. In many areas of Australia, the number of gauged sites is so small that the
delineation of hydrologic regions would be counterproductive and resort is made to
geographically contiguous regions [/EA, 1987]. Some formal classification techniques, such
as the method of residuals, are also based on the assumption that an ungauged site will be
assigned to the geographical region in which it lies. In the context of the relatively benign
hydrology of England, Wiltshire [1985, 1986] notes that: (1) geographical proximity may not
be a useful indicator of hydrologic similarity; (2) the distance between sites is not a measure



of dissimilarity; (3) flood series within geographically contiguous regions are less likely to be
independent; and (4) such regions engender abrupt changes in the values of hydrological
parameters at their boundaries.

Acreman and Wiltshire [1989] proposed the ‘region of influence’ (ROI) approach in which
each site can be assigned its own unique region consisting of sites with which it is ‘similar’
and a fractional membership to more than one region. There is no need to draw boundaries
between regions or for all sites in a particular area to use the same number of gauged sites in
the estimation of at-site flood quantiles [Burn, 1990a, b]. Similarity is judged using the
assumption that catchments with similar flood frequency distributions should have similar
values of catchment characteristics [Hosking and Wallis, 1990]. A hydro-geomorphic-
climatological basis for discerning similarity has not yet been established. A disadvantage
with this approach is that a new analysis has to be made for each new ungauged site to find
the set of sites that form its region. Given the lack of guidance provided by statistical
methods, there remains a need for developing relevant hydrologic laws that would permit the
classification of catchments [see Dooge, 1986).

There have been few studies to compare the relative merits of classification techniques.
Bhaskar and O'Connor [1989] compared the method of residuals with a procedure based on
cluster and discriminant analyses using data from 253 sites across Kentucky. The clustering
variables used were C(Z) where Z = log Q and the specific mean annual flood g, = Q/A
where A is catchment area. The variables used to discriminate between ‘cluster regions’ were
catchment area, basin shape index, main channel slope, and main channel sinuosity. Bhaskar
and O'Connor [1989] found that the regions obtained from cluster analysis were different to
those obtained from the method of residuals and were not coincident with geographical
boundaries. The ‘cluster regions’ were also more distinguishable and better discriminated
than those obtained from the method of residuals in that the total percentage of correct
classifications were 64-8% and 16:9%, respectively. Burn [1990a, b] compared a ROI
approach with a regionalisation approach based on principal component analysis and fixed
regions that had been used previously [Burn, 1988]. He found that while both methods
produced comparable results for sites with ‘average’ C(Q) and g, values, the ROI approach
results in a set of sites with a closer concordance with the target site and flood quantile
estimates that are more accurate than those obtained from the regionalisation technique.
Through a Monte Carlo experiment, Burn [1990b] found that the network average root mean
squared errors for flood quantiles estimated using the ROI approach were about 70% of those
obtained by using all sites in the estimation of at-site extremes or a partitioning of the stations

into three regions identified by a clustering approach. All three methods gave comparable
results for average bias.

Several tests have been proposed for checking whether marked homogeneity exists within the
groups and whether the groups are significantly different from each other. Dalrymple [1960]
compared the variability of estimates of Xy for each site within a region with the expected
variability if sampling error alone was responsible for the differences between sites. An
underlying EV1 distribution was assumed. Mosley [1981), Tasker [1982b] and Bhaskar and
O'Connor [1989] used discriminant analysis to test the effectiveness of groupings. Wiltshire
[1986] proposed two tests based on the C, of the annual flood series alone but suggested that
additional statistics such as the coefficient of skewness could be imbedded in the procedure.
Acreman and Sinclair [1986] used a likelihood ratio test based on the assumption of an
underlying GEV distribution. The power of this test is low for short record lengths. Nathan
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and McMahon [1990] used Andrews' [1972] curves to test for homogeneity. These curves
represent an n—dimensional variable as a two-dimensional curve and can be used for the
identification of clusters and atypical values in the data. A plot of the curves for similar
catchments appears as a closely-spaced band. Hosking and Wallis [1993] have devised tests
based on L-moments which are described in a later Section. Nathan and Weinmann [1991]
examined the use of L-moment ratio plots.

2.3.3 Importance of regional homogeneity

The importance of grouping sites into statistically, and presumed physically, homogeneous
regions for regional estimation has been addressed using both Bayesian (subjective) and
classical (frequentist) statistics. Using an empirical Bayes, normal probability model,
Kuczera [1983b] showed that the pooling of at-site and regional data could be
counterproductive at an atypical site depending on the ratio of the difference between the site
and regional quantile estimates to their expected differences. Lettenmaier and Potter [1985]
and Lettenmaier et al. [1987] conducted Monte Carlo experiments to explore the influence of
heterogeneity (modelled by variations in the second moment) on RFFA methods. Both
studies showed that the performance of the regional estimators deteriorated as either the
regional mean or median C,, M(C,), or the site-to-site variation in C,, (Ci(C,) or R*(C,) =
R(C,) M(C,) where R(C,) denotes the regional range in C,), increased. (Note that the latter
result is not surprising for the simple index flood methods that were tested.) It was also found
that large biases can result if the distributional form is misspecified and that the use of
alternative methods which accommodate regional heterogeneity in moments higher than the
first order may be advantageous. Overall, small departures from perfect homogeneity (C.(C)
< 005, say) were not found to have an appreciable effect on RFFA. However, the question
remains: what does one do when larger variability is present?

2.4  Inter-Site Dependence

Cunnane [1988] lists three factors which rriay Jead to the magnitudes of annual flood series at
different sites within the same region exhibiting some association or dependence:

. in some years of the record, the annual maxima at a number of sites may be
due to the same meteorological events;

. during a relatively dry spell, all or most of the annual maxima may be low over
the region but not necessarily due to the same set of meteorological events;
and

. a persistent absence of large or extreme precipitation in widespread

meteorological events leading to moderate annual maxima at all or most sites.
This also may be caused by different meteorological events.

Cunnane [1988] notes that some RFFA methods make use of inter-site dependence (or
correlation) explicitly while others depend on its complete or partial absence. The effects of
inter-site dependence on RFFA have attracted limited attention. Using his empirical Bayes,
normal probability model and a first-order analysis, Kuczera [1983b] found inter-site
correlation to be of secondary importance when compared with the effects of spatial
heterogeneity. Stedinger [1983] described a regionalisation approach based on a log-space
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transformation and derived theoretical limits on estimator accuracy which arise when
concurrent flows at gauged sites are correlated. He found that in the presence of reasonable
average cross-correlation (P > 0-3) there are severe limits on the accuracy of estimates of
regional statistics when the length of the concurrent record is short. Hosking and Wallis
[1988] conducted Monte Carlo experiments to assess the effects of inter-site dependence on
the regional probability weighted moments (PWM) algorithm. (A brief description of PWM
and the recently developed L-moments is given below.) Hosking and Wallis confirmed
Kuczera's findings, but also found that any bias in the flood quantiles is unchanged by the
presence of inter-site dependence and that RFFA is more accurate than at-site analysis when
both spatial heterogeneity and inter-sitc dependence are present and the probability
distribution is misspecified. Stedinger's [1983] theoretical limits were found by Hosking and
Wallis [1988] to over-estimate the root-mean-square error of the regional growth factor.

2.5  Effects of Measurement Errors on Flood Frequency Analysis

The accuracy of estimated peak discharge rates depends upon flood magnitude. Peak stages
of low magnitude floods are recorded at the gauging station and the corresponding discharge
read from a rating curve established by current meter measurements. Peak discharges for
intermediate magnitude floods are usually inferred by extrapolating the rating curve. For high
magnitude floods, peak stages may be inferred from high water marks and the discharge
computed by indirect means such as the slope-area method. Thus the largest events in a
typical annual flood series may contain considerable measurement errors [Jarrert, 1987,
Kirby, 1987] and the variances of peak discharge estimates may vary with stage [Potter and
Walker, 1981]. These events can have an disproportionate influence on extreme quantile
estimation, particularly for heavy-tailed probability distributions such as the LP3 distribution
in the case of large positive skew [Greis, 1983].

Potter and Walker [1981] investigated the effects of this type of error, assuming that both
measurement methods were unbiased and that the use of indirect flow rate estimation
methods led to a large increase in the standard deviation of the measurement error. They
found that in the presence of this type of error the coefficients of variation, skewness, and
kurtosis of the distribution of measured flood discharges are significantly higher than those of
the parent distribution (which was assumed to be log normal, LN). In a later study where they
examined the small-sample aspects of this error, Potter and Walker [1982] found that the
effect of this error was to offset the bias due to the small-sample boundedness of these
statistics [see, e.g., Kirby, 1974; Samuelson, 1968; Wallis et al., 1974] and that the bias due to
the error increased with sample size.

Cong and Xu [1987) presented an alternative analysis of the problem based on the LP3
distribution, Chinese gauging practice and data. They found that in the absence of extremely
large floods, the effects of small measurement errors are themselves small and suggested that
they could be neglected. However Cong and Xu qualified their findings by stating that it is
not usually necessary to extrapolate established rating curves for middle to large sized
Chinese rivers. Thus the effects of measurement error may be more pronounced in situations
where considerable extrapolation is needed.
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2.6  Regional Flood Frequency Analysis for Gauged Sites

RFFA methods which use both data for the site of interest and data from other sites in the
same region include:

. Institutionalised methods such as those of the U.S. Geological Survey, the
Interagency Advisory Committee on Water Data (IACWD, formerly the
United States Water Resources Council), and the Natural Environment

Research Council (NERC);
. Bayesian methods;
. Two-component extreme value (TCEV) method;
* methods based on L-moments; and
) threshold methods.

2.6.1 Institutionalised methods

The Interagency Advisory Committee on Water Data [I[ACWD, 1982] method involves the
use of a LP3 distribution. The first two moments of Z are estimated from at-site data by the
method of moments while the coefficient of skewness is estimated jointly from at-site and
regional data. The rationale is that at-site records are not typically long enough to give an
accurate estimate of the skewness of Z. Thus the accuracy of the estimated skew coefficient
is improved by weighting the at-site skew £, and a generalised (regional) skew g estimated
by pooling information from nearby sites or interpolating on the published map of g for the
United States. Here the weighting of the at-site and generalised skew is in inverse proportion
to their individual mean-square errors:

MSE;(§,) + MSE,; (8)

8w = T MSE, + MSE,, (21

where g, is the weighted skew coefficient, and MSE i and MSE ; are the mean-square errors

of at-site and gencralised skew, respectively. JACWD [1982] recommend using
MSE_ =0-302 if g is obtained from the published map. If Z is LP3 distributed:

MSE. ~ lo{u—b[logw(h'/m)]} (212)

[ $3

where

~0-33+0-08|2 5| <0-
o { +0-08/gl,  |o]<0-90 013

-0-52+0-30|3|, |8|>0-90
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.94 —0-26]3g|, g/ <1.-50
) {0 9 2| |gl< 214)

0-55, |2 >1-50
and N is the record length in years.

Tasker and Stedinger [1986] presented an improved weighted least squares method for
estimating the generalised skewness and its standard error. This method results in an estimate
of standard error which is not inflated by sampling variability. Using Monte Carlo
simulation, Wallis and Wood [1985] found that procedures based on the concept of a
generalised coefficient of skewness can improve the accuracy of flood quantile estimates.
However, they also found that the GEV-PWM and WAK-PWM procedures performed
significantly better. These findings were later supported by the results of the Monte Carlo
experiments of Potter and Lettenmaier [1990].

The Natural Environment Research Council [NERC, 1975] method consisted of a mixture of
regional pooling and across station averaging. It is based on the GEV distribution and a
subjective, graphical procedure involving the drawing of the X-T curve with less weight
being given to ordinates with large T than to those with moderate 7. This weighting scheme
can be carried out objectively by using a least squares algorithm. However, Hosking et al.
[19854] found a least squares implementation of the method to be less efficient and more
biased than GEV-PWM and WAK-PWM procedures.

2.6.2 Bayesian methods

Bayesian methods offer a means of combining at-site and regional information without resort
to reduced or standardised flood series or to the assumption of regional homogeneity.
Regional information about the distribution parameters is expressed as a prior distribution
conditional on catchment characteristics. Using Bayes theorem, this information is combined
with at-site data expressed as a sample likelihood to give a posterior distribution of the
distribution parameters. Flood quantile estimates at the site are then obtained from the
posterior distribution. Cunnane and Nash [1974] and Cunnane [1988] describe the Bayesian
approach to RFFA.

Kuczera [1982b] described the application of empirical Bayes (EB) theory to RFFA and
presented a special case, the linear empirical Bayes (LEB) approach. Using a case study in
which floods were assumed to be log normally distributed and sites had record lengths of 10
and 30 years each, he demonstrated that EB techniques offer better performance over at-site
procedures in estimating the 1 in 100 AEP flood. The difference was more marked for the
shorter record lengths. The prior distribution is influential typically up to a sample size of
about 20 to 25. For larger sample sizes, the sample likelihood dominates and the prior
distribution has little influence,

Prior distributions can be obtained from regression relations between the distribution
parameters and catchment characteristics. However, these distributions are usually imprecise
and do not improve the precision of the at-site estimates [Cunnane, 1988). Lettenmaier and
Potter [1985] compared and index flood estimators in a Monte Carlo simulation study.
Overall, they found that the LEB quantile estimates where not as precise as estimates
obtained from index flood methods.
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Kuczera [1983a] presented an EB procedure for the regionalisation of the shape parameter of
the power normal (PN) distribution. The PN distribution uses the power transformation
proposed by Box and Cox [1964):
A
-1/ A, Az0, @>0
X = {(Q ) 0 @15)
InQ, A=0, 0>0

where A is the transformation (shape) parameter and X is assumed to be independently and
normally distributed N(lL, 0'2). When A =0, the PN reduces to the LN distribution.

The outcomes of Kuczera's [1983a] method are the posterior distributions of the PN

parameters |1, ¢ and A, and the flood quantiles. The prior distribution of A includes the effects
of unequal sampling variances between sites and inter-site correlation.

2.6.3 Two-component extreme value (TCEV) method

Rossi et al. [1984] developed a station year method based on the TCEV distribution.
Estimates of the four distributional parameters were obtained by the method of maximum
likelihood. However, they recommended that the TCEV distribution be used in a regional
rather than an at-site estimation context as its use can lead to unstable parameter estimates.

Beran et al. [1986] derived expressions for the moments of the TCEV distribution including
PWM. Arnell and Gabriele [1988] conducted Monte Carlo experiments to examine the
performance of the regional TCEV flood frequency estimation procedure [Rossi et al., 1984,
Fiorentino et al., 1985; Rossi et al., 1986; Fiorentino et al., 1987} and to compare it with two
other methods based on the generalised extreme value (GEV) and Wakeby (WAK)
distributions. The regional GEV and WAK parameters were estimated using PWM. They
found that there were occasions when the TCEV procedure failed to reach a solution, the
procedure is robust in the sense that its worst efforts were not as bad as those of the GEV-
PWM and WAK-PWM methods, and that the performance of the procedure declines as
sample sizes decrease from 40 to 10.

REFA approaches based on the four parameter TCEV and five parameter WAK distributions
provide a means of fitting a theoretical distribution to all of the flood data. In most
applications a distribution that describes the largest floods is required. The relatively
parsimonious three parameter GEV distribution has been used for this purpose.

Gabriele and Arnell [1991] proposed a hierarchical approach based on the TCEV and GEV
distributions which accounts for different spatial variability in different flood characteristics,
and which attempts to maximise the benefits of pooling data while minimising the adverse
effects of defining too large a region. They use information from larger regions (i.e., more
sites) to estimate the distributional parameters controlling skewness than are used to derive
the parameters that determine the coefficient of variation. Simulation experiments based on
the experimental design used by Lettenmaier et al. [1987] revealed that the subdivision of
regions with assumed constant skewness into regions with assumed constant coefficient of
variation can lead to more precise quantile estimates. (Ribeiro-Correa and Rousselle {1993]
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have proposed 2 hierarchical and empirical Bayes approach for fitting regional Pearson Type
III distributions.) : : -

2.6.4 Methods based on L-moments

Theory. Traditional methods of parameter estimation for flood frequency distributions
include the method of moments and maximum likelihood estimation. Greenwood et al.
[1979] introduced the concept of probability weighted moments (PWM) of a random variable
Y which are defined as

M,,, = E[Y’(FO)1-F)] (2-16)

where p, r, s are real numbers. fr=s=0, (2-16) represents the conventional moment about
the origin of order p. Cunnane [1988] notes that PWM calculations can be performed first in
the O-domain followed by standardisation, or in the X-domain after standardisation of the O
values. Direct application of the PWM method is restricted to distributions that are
expressible directly in inverse form. Greenwood et al. [1979] present explicit expressions for
the parameters of the WAK, generalised lambda, kappa, Weibull, and Gumbel distributions as
functions of PWMs. Hosking et al. {1985b] present PWM estimators of the parameters of the
GEV distribution. The LP3 distribution is not overly tractable. Song and Ding [1988] and
Ding et al. [1989] propose an iterative PWM method for estimating the parameters of the
Pearson Type I distribution. Jakubowski [1992] presents the fundamental formulae for the
PWM estimators for this distribution in which the estimator of the shape parameter is an
implicit function of that parameter and PWMs.

Several index flood studies in which distributions are fitted to the annual flood series using
PWM have appeared in the literature [Wallis, 1980; Greis and Wood, 1981; Hosking et al.,
1985a; Lettenmaier and Potter, 1985, Wallis and Wood, 1985; Lettenmaier et al., 1987,
Potter and Lettenmaier, 1990]. Distributional choices have included EVI1, EV2, EV3, GEV,
and WAK distributions [Potter, 1987]. These methods have been found to perform very well
in a variety of situations and to be vastly superior to existing institutionalised methods (see
above).

An alternative to conventional descriptions of a distributions shape such as the coefficients of
variation, skewness and kurtosis is L-moments. Hosking [1990] defined L-moments by:

x, = E[YP. F() 2-17)

where P,(.) denotes the rth shifted Legendre polynomial. L-moments and PWM are related
by

Mg = Z;P:,k B (2-18)
where
B I Ml,k.O (2:19)
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and

o= () [’J(r”‘J (2:20)
pr.k k k , |

Thus procedures based on PWM and L-moments are equivalent. Lety <y, <...<y,bea
finite ordered sample. Then an unbiased estimator of A, is given by

i, = Z P b (2:21)
k=0 .
where
S (J-D(j-2)...(j—r

R T T M e
Useful quantities are the L-moment ratios:

T o= A (223a)

T, = A, /A, r=3,4, .. (2:23b)

where |1:, < 1. The estimator of T is consistent but not unbiased.

The advantage that L-moments has over PWM is that the ratios defined by (2-23a, b) are
dimensionless and are more easily interpretable as measures of distributional shape. Hosking
and Wallis [1993] note that: A; is the mean of the distribution (a measure of location); A; is a
measure of scale; T is a L-moment coefficient of variation (L CV); 13 a measure of skewness

(L skewness); and 14 a measure of kurtosis (L kurtosis). Thus the distributional parameters
are taken as Aq, T, T3, ..., Tp.

The estimators of A, A and particularly T3 and 1, are used to identify implausible parent
distributions and to estimate the parameters by equating the estimates to expressions for the
corresponding population L-moments [Hosking, 1990]. L-moments are more robust than
conventional moments to extremes in the data which are important hydrologically and yield
more efficient parameter estimates than the maximum likelihood method.

Data screening and identification of homogeneous regions. Hosking and Wallis [1993]
have devised tests based on L-moments for identifying unusual sites within a region and for

assessing whether a proposed region is homogeneous. Let &; = (1, 1%, 1) be the L-
moment ratio vector for site j. The first test is based on a discordancy measure:

D, = %(”f‘E)Ts-I("j"T) (2-24)

where
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(2-25)
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and

1
S = —EJTIFI(u"“E)(uJ_ﬁ)T (2-26)

While Hosking and Wallis [1993] suggest D; 23 as a criterion for declaring a site to be

unusual, they recommend that the data for sites with the largest D; values should be
scrutinised carefully regardless of the magnitude of these values. The second test is based on
a heterogeneity measure which is determined by a five stage process: (1) compute the
weighted standard deviation of the at-site sample L CVs defined by

M . 2 M
v o= XN, (-7 XN, 2:27)
j= J=

(2) fit the four parameter kappa distribution to the group average L-moments; (3) generate a
large number Ny of homogeneous regions from the fitted distribution so that the simulated
regions have no cross or serial correlation and the record lengths of the M sites are preserved;
(4) compute V for each simulated region and the mean py and standard deviation oy of the
Niim values of V; and (5) compute the heterogeneity measure defined by

V-
H = -(—MV) (2-28)
GV

Hosking and Wallis [1993] suggest Ngm = 500 and that a region be declared ‘acceptably
homogeneous’ if H < 1, ‘possibly homogeneous’ if 1< H <2 and ‘definitely heterogeneous’
if H>2. Hosking and Wallis note that it may not be possible to fit the kappa distribution to
regional average L-moments if T, >>%,. In such cases they recommend that the simulated
regions be generated from a fitted generalised logistic distribution.

2.6.5 Threshold methods

Cunnane [1988] notes that threshold methods may refer to censored annual maximum series
or to peaks over the threshold (POT) series. (The latter is also known as partial duration
series.) Threshold methods contribute little if any information on low AEP floods (T > 10)
that is not contained in the annual series. The convergence of threshold and annual flood
series was demonstrated by Langbein [1949]. Consequently threshold methods are not
considered any further.

2.7  Application of Regional Flood Frequency Methods at Ungauged Sites

Two general techniques that have been used to derive quantile estimates at ungauged sites are
hydrologic regressions and derived flood frequency distributions. These techniques are also
useful in situations where there are few flow data available at or near the site of interest.
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2.7.1 Hydrologic regression

Regression can be used to derive empirical equations for the prediction of standardised or
unstandardised flood quantiles for an ungauged catchment. A regression is developed for a
region that is thought to be homogeneous with respect to flood peaks. The index floods or
flood quantiles for the gauged sites within the region are related to independent variables in
the form of measurable climatic characteristics (usually rainfall volume) and physical features
(such as drainage area). Values of these independent variables for the ungauged catchment
are used in the regression equation to estimate the required index flood or flood quantile.

The most commonly adopted method for estimating the parameters of the regression models
for RFFA has been ordinary least squares (OLS). OLS is predicated on the assumptions that
the regression residuals have zero mean and constant variance, and are independently
distributed. However, Stedinger and Tasker [1985] show that these assumptions are likely to
be violated because of site-to-site variations in the record length at gauged sites and cross
correlations among concurrent discharges. They developed procedures for using weighted
least squares (WLS) and generalised least squares (GLS) which account for heteroscedastic
residuals (residuals with a nonconstant error variance across the range of computed flood
quantiles), and both heteroscedastic residuals and inter-site correlation, respectively. Using
Monte Carlo experiments, Stedinger and Tasker [1985, 1986] showed that GLS provides
more accurate parameter estimates, improvements in the precision of the estimates, and an
almost unbiased estimator of the underlying regression medel's error variance than OLS when
the record length varies widely from site to site and discharges are cross correlated. Their
GLS approach permitted use of station records of different lengths. Non-overlapping flood
records at the various sites prevents the calculation of actual cross correlations. This problem
was overcome by assuming a constant cross correlation between the records of all sites within
the region.

Six schemes that represent the range of approaches are described below.

Index Flood Method. For ungauged sites, the index flood is estimated using a relation
between that flood and catchment and rainfall or regional variables derived from gauged sites
in the same region. Typically, the relation takes the form

Q = aB’C°D? (2:29)

where B, C and D are physiographic and climatic variables such as catchment area, channel
slope and mean annual precipitation, and a, b, ¢, and d are parameters. Estimates of the
parameters of the dimensionless regional frequency curve éiR) (k =1, ..., p) are obtained
using one of the methods described in Section 2.6 and (2-7), and the estimate of Xr from the
fitted curve . The estimate of Qr is obtained with (2-9).

The index flood method [Dalrymple, 1960] was once the standard U.S. Geological Survey
approach to RFFA. However, the U.S. Geological Survey abandoned the method after it was
discovered that, in general, C, varies approximately inversely with catchment area. This
phenomenon is particularly noticeable when dealing with humid catchments of greatly
differing size with larger catchments having flatter frequency curves [see, e.g., Dawdy, 1961;
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Benson, 1962a; Riggs, 1973; Smith, 1992]. Smith [1992, Fig. 4] showed that C, varied
approximately with area for catchments with areas less than 26 km® and inversely with area
for larger catchments in the central Appalachian region of Maryland and Virginia. Thus he
suggested that peak flows in small catchments may behave differently from those in large
catchments.

The index flood method has received considerable renewed attention since the introduction of
the WAK distribution by Houghton [1978]. It is only valid for constant regional C, and
constant form of the parent distribution. Gupta et al. {1994] note that observed departures
from the assumptions of the index flood method have often been attributed to a lack of
regional homogeneity. They show that the departures are due to violations of the basic
assumptions of the index flood method. The results of Smith [1992), Wolff and Burges
[1994] and Gupta et al. [1994] introduce important considerations, critical to quantile
estimation, that were not detectable by conventional statistical methods.

U.S. Geological Survey method. Floods of various AEPs are estimated at all gauged sites
within a region. The discharge for each AEP is then related to catchment and rainfall or
regional variables by a multiple regression model of the form

Q, = aB*C°D’ 7 (2-30)

Regional homogeneity is assumed but there is no assumption of constant C, within regions.
This approach is called the Multiple Regression, Multiple Correlation or Quantile Regression
method and is the principal method used by the U.S. Geological Survey [see, e.g., Benson,
1962b; Cruff and Rantz, 1965; Riggs, 1973]. Because of sample size considerations, this
method can give a smaller estimated peak flood for a given AEP than for a smaller AEP
[Benson, 1962b, p. B-52; IEA, 1987, p. 98]. However, hydrologic judgement can be used to
make 2 slight adjustment to the flood frequency curve so that Qr increases smoothly with T
[Benson, 1962; Kirby and Moss, 1987].

Multiscaling method. Gupta and Dawdy [1994) and Gupta et al. [1994] apply the
multiscaling theory of Gupta and Waymire [1990] to RFFA. Smith [1992] interpreted the
different C, versus arca relationships for small and large catchments as grounds for not
applying multiscaling theory. Gupta et al. [1994] have shown that Smith’s [1992] results and
the U.S. Geological Survey method are consistent with the theory. While multiscaling theory
has had little application in RFFA, it merits continued development and testing.

The quantile regression equations for the multiscaling model can be expressed as
0,(A) = oT)AP 231)

where the coefficient ¢(T) and the exponent 8(7) depend on the AEP of 1 in 7. Equation
(2-31) cannot conform with the index flood method unless 6(T) is independent of 7. Unlike
the U.S. Geological Survey method, catchment area is the only independent variable in (2-31).
However, (2-31) is consistent with the Survey’s experience in that the exponent has been
observed to vary with 7 and that this variation is systematic.
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The quantile equations can be written more explicitly as follows. Let A, and A, denote the
drainage areas of two reference catchments such that

A, < min4, < maxA, < A, (2-:32)

in which A; denotes the catchment area of the ith site within the region of interest. Following
the observations of Smith [1992] two ranges of a dimensionless parameter, defined as A =
A/A, <1 and A = A/A; > 1, are considered. The multiscaling representation of peak flows is
different for each range. Let A, denote the critical catchment area at which the nature of the
variability of peak flows with area changes. The multiscaling model can be written as

1080, (A) = (a,— WologA) + [b,—o%logA]l  w), A <A<A, (2:33a)

and
logQ,(A) = (m,logA—a,) + [c%logA—b]" "w,, A <A<A, (233b)

where ag, a,, bo, by, 0., flo, W1, Go, and O; are parameters to be estimated and w'r is the (1 -
1/Tth quantile of —W1 where W1 is a random variable having a Levy-stable probability
density with a ‘characteristic exponent’ of 0 < o < 2 [Levy, 1924; Gupta and Waymire, 1990].
For o = 2, (2-33a) is known as the log normal scaling model, and for ot = 1 as the Cauchy
model. Using the results of Sivapalan et al. [1990], Gupta and Dawdy [1994] and Gupta et
al. [1994] present arguments indicating that parameters & and Lo can be interpreted in terms
of mean rainfall and mean saturated soil hydraulic conductivity. Application of the
multiscaling model to ungauged catchments will require further development of the linkage
between the model parameters and catchment characteristics.

Gupta et al. [1994] applied the multiscaling model to 270 catchments in the central
Appalachian region. This sample included the 104 catchments used by Smith [1992]. They
examined five Levy distributions with different values for o and the skewness parameter, and
four values for A.. With the exception of ¢, the model parametefs were estimated using OLS,
a quasi-Newton optimisation scheme, and log-transformed empirical and model flood
quantiles. Gupta et al. [1994] found while the presence of multiscaling in small catchments
is much weaker than that in larger catchments for the central Appalachia data set, the moment
predictions of the model give a good fit to the first four moments of all of the empirical data.

Reference ARI method. Here a regression model is developed for a reference ARI and
average frequency factors for the region are applied to the estimates to determine floods of
other ARIs [see, e.g., Macqueen, 1979; McDermott and Pilgrim, 1983].

Catchment response time method. Potter and Faulkner [1987] have proposed that the ratio
of drainage area to time-to-peak (A/7),) is a good indicator of flood quantiles. Using flow data
from the quaternary geological ‘driftless’ area of Wisconsin, they compared the results of
regressions of flood quantiles of various ARI on A/T), A alone, and A and annual precipitation
P. They found that the standard errors of the regression estimates were markedly lower for
the model that used A/T,. Application of the method requires direct measurement of the river
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stage for one or more events at the site for which the quantiles are to be estimated. They
argue that the cost may not be great given recent developments in hydrologic monitoring.
However, this presupposes that the practitioner has the time to wait for one or more events to
be recorded.

Rainfall-runoff modelling. Rainfall-runoff modelling offers a means of estimating flood
quantiles at ungauged sites provided it is possible to obtain estimates of the model parameters
and rainfall and evaporation data for the catchment of interest. One method of obtaining
flood quantiles is to apply conventional flood frequency analysis to the streamflow series
obtained from a continuous simulation rainfall-runoff model driven by historical rainfall and
evaporation records. However, the record lengths for historical data are usually short and
quantile estimates corresponding to low AEPs will involve considerable extrapolation of the
probability distribution fitted to a synthesised annual flood series. Another method is to
analyse a very long synthetic streamflow record obtained by driving the continuous rainfall-
runoff model with a stochastic weather model [see Bras et al., 1985]. This approach relies on
the ability of the stochastic weather model to simulate rainfall occurrence and amounts during
and immediately prior to extreme flood events.

Lichty and Karlinger [1990] explored the use of rainfall-runoff modelling as a means of
deriving regionalised flood estimates. The rainfall-runoff model of Dawdy et al. [1972] was
used together with long-term rainfall and pan evaporation records from 71 sites within the
eastern United States to generate modelled annual flood series for 50 basins. A total of 3,550
(50 x 71) annual flood series were synthesised. The magnitudes of the modelled floods of
AEP 1in T (T = 2, 25, 100) were standardised by drainage area and were regressed against a
reduced set of rainfall-runoff model parameters (sample size of 50) for each of the 71 rainfall
sites. A log-transformed multiple linear regression model was used wherein the reduced set
of parameters consisted of an infiltration factor and a hydrograph shape factor (lag time}
which were expressed as functions of various model parameters. The values of the intercept
of the regression models were regionalised using kriging. The accuracy of the regionalised
flood quantiles was tested using observed annual flood series from 200 gauged catchments.
The regionalised flood quantiles explained a large part of the variability in the at-site
estimates with coefficients of determination ranging from 0-89 for the 1 in 2 year flood to
0-82 for the 1 in 100 year flood. The corresponding standard errors ranged from 45 to 57
percent. However, simple log-transformed regressions of the at-site floods on the
regionalised floods revealed that the regionalised floods were biased estimators of observed
floods since the regression constant and coefficient were significantly different from a zero
intercept and unit slope, respectively.

Bradley and Potter [1992] proposed a ‘peak-to-volume’ approach for the estimation of flood
quantiles. The method is based on the premise that runoff volume distributions conform
more closely to well known parametric distributions than peak discharge distributions,
particularly in the upper tail {see, e.g., Bradley and Potter, 1992, Figs 8 and 9]. Thus the
extrapolation of a runoff volume distribution should be more reliable than an extrapolation of
the peak discharge distribution. A GEV distribution is fitted to the three-day runoff volumes
obtained from a continuous simulated streamflow series and a locally weighted regression
model to the simulated flood peak discharge and runoff volume data. A flood is defined as an
event where the peak discharge exceeded a specified threshold. The probability distribution
of peak discharge is estimated by integrating the distribution of runoff volume with the
conditional (truncated log normal) distribution of peak discharge on volume for different
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values of peak discharge. The annual peak discharge distribution is obtained from the
distribution of peak discharge using the assumption that the threshold is sufficiently large
enough that the peak discharges are independent and that floods occur according to a Poisson
process. The application of the ‘peak-to-volume’ method to ungauged catchments is reliant
on upon successful regionalisation of the rainfall-runoff model parameters and the conditional
distribution of peak discharge on runoff volume, and the availability of historical or synthetic
rainfall and evaporation data. '

2.7.2 Derived flood frequency distributions

The derived flood frequency distribution approach offers a means of estimating flood
quantiles at ungauged sites provided it is possible to estimate catchment response from
catchment characteristics, climatic records and field observations. Thus it offers a means of
deriving a flood frequency distribution from physical rather than purely statistical
considerations. Derivation of the distribution by analytical means and the reduction of the
need for model calibration requires the use of simplistic rainfall and catchment models.
While these models may not be able to predict streamflow as well as complex models, it may
be argued that the use of simple models is justified (and may be the only choice) for ungauged
regions and that their predictions may be adequate for flood frequency analyses [Moughamian
et al., 1987].

Eagleson [1972) analytically derived the flood frequency distribution for a catchment
idealised as an ‘open-book’ (or V-shaped plane) by assuming that rainfall intensity and
duration are independent random variables with an exponential joint probability density
function and by using kinematic wave overland flow dynamics. It was assumed also that the
source area contributing to runoff is a narrow band symmetrical about the stream at the centre
of the plane and that infiltration can be represented by a simple Horton model with constant
infiltration capacity. Eagleson [1972] compared the mean annual floods from his derived
flood frequency relations with direct runoff producing areas equal to Af3 and A/2 with those
from observed annual flood series for 44 catchments in Connecticut. The two theoretical
distributions bracketed the OLS regression line of observed log QO on log A. However, the
catchment model contains parameters that are difficult to estimate without some measured
streamflow data [Moughamian et al., 1987).

Hebson and Wood [1982) and Diaz-Granados et al. [1984] have presented methods for
deriving flood frequency distributions using Eagleson's [1972] rainfall model and catchment
models based on the geomorphological unit hydrograph (GUH) concept [see, e.g., Rodriguez-
Iturbe and Valdes, 1979; Gupta et al., 1980; Rodriguez-Iturbe et al., 1982a, b). The GUH is
an instantaneous unit hydrograph that is based on measurable channel network and catchment
properties and is a simple function of measurable physical parameters. It is a linear rainfall-
runoff model, and is interpreted as the probability density function of the travel time taken by
a raindrop landing anywhere in the catchment to reach the catchment outlet.

Hebson and Wood [1982] used the same infiltration model as Eagleson [1972] and based
their catchment model on the third-order GUH of Rodriguez-Iturbe and Valdes [1979].
Results from tests on two, third-order, Appalachian Mountain catchments showed that their
procedure compared well with historical data and Eagleson's [1972] method.
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Diaz-Granados et al. [1984] did not use the contributing area concept but assumed instead
that the infiltration capacity varies with time according to the Philip [1957] model. - Their
catchment model was based on a later development of the GUH theory [Rodriguez-Iturbe et
al., 19824). In this model, the peak streamflow velocity parameter of the original GUH is
replaced by an expression involving the intensity and duration of rainfall excess and the
kinematic wave parameter for the stream of highest order as defined by Rodriguez-Iturbe et
al. [1982b, Eq. 5]. The convolution integral for this approach is nonlinear in rainfall excess
jntensity. Diaz-Granados et al. tested their approach against the sample flood frequency
distributions for arid and wet climates and achieved good and reasonable fits, respectively.

Moughamian et al. [1987) examined the performance of the Hebson and Wood [1982] and
Diaz-Granados et al. [1984] procedures. They applied these methods to three different North
American catchments. Each catchment had over forty years of streamflow data. The flood
frequency distributions obtained from each procedure were compared with the sample
distributions for each catchment. The derived distribution methods performed poorly in all
three cases even when some of the model parameters were estimated from individual flood
events. Many of these parameter estimates varied widely between events. The magnitude of
the variability prompted Moughamian et al. [1987] to perform a sensitivity analysis wherein it
was found that the cumulative effect of a number of relatively small errors in the rainfall and
catchment models could be quite large. They concluded that derived methods need to be
improved before they could be used in practice.

Suggested areas for additional research were the identification of the differences in the runoff
generation mechanisms that are most influential for small through to large flood events and
the development of probabilistic rainfall models that put greater emphasis on the nature of
rare storms which are responsible for low AEP floods. Moughamian et al. also noted that it
may be necessary to relate the catchment model assumptions and parameters more explicitly
to storm intensity and duration.

Sivapalan et al. [1990] used the runoff generation model of Sivapalan et al. [1987] with a
geomorphic instantaneous unit hydrograph catchment response model that incorporated the
infiltration excess and saturation excess runoff generation mechanisms. They were able to
examine the behaviour of runoff due to spatially variable rainfall and terrain. Sivapalan et al.
[1990) found that: (1) in cases where flood generation is dominated by infiltration excess
runoff, the shape of the flood frequency distribution can be specified by three dimensionless
parameters (scaled mean rainfall intensity, scaled mean saturated hydraulic conductivity, and
scaled catchment area); (2) variables such as average contributing area, initial catchment
wetness and storm duration are constant across ARIs; and (3) the peaks for low ARI floods
are dominated by saturation excess runoff with a transition to infiltration excess runoff for
floods with high ARIs. While the model response is indicative of possible flood generation
behaviour, it has yet to be tested against empirical flood data. Gupta and Dawdy [1994] and
Gupta et al. [1994] demonstrate that the sensitivity of the flood frequency distribution to
scaled catchment area plot presented by Sivapalan et al. [1990, Fig. 15] is consistent with
multiscaling theory and not the index flood method. (Scaled catchment area was defined by
Sivapalan et al. as A* = Al?L‘,,2 where A, denotes the rainfall correlation length scale.)

Cadavid et al. [1991] used Eagleson's [1972] rainfall model, Philip’s [1957] infiltration

equation and a kinematic overland flow model in an attempt to derive flood frequency
distributions for small urban catchments. They applied their model to two catchments and
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compared the derived distributions with LP3 distributions fitted to the historical data.
Cadavid et al. [1991] found that their approach gave a better fit to the low ARI floods than
the high ARI floods. They concluded that Eagleson's exponential rainfall model may not be
an accurate representation of the rainfall processes that cause floods and that the estimation of
the rainfall model parameters appears to have a major effect on the success of the derived
distribution approach.

Raines and Valdes [1993] modified the model of Diaz-Granados et al. [1984] by using the
Soil Conservation Service curve number method rather than the Philip equation. They
applied this model, the methods of Hebson and Wood [1982] and Diaz-Granados et al.
[1984], and the HEC-I [1981] event-based simulation model to four catchments in Texas.
Raines and Valdes [1993] noted that although the performance of their procedure was
superior to previous approaches, none of the methods provided better results when compared
with the LP3 distributions fitted to the historical data. They also concluded that the
estimation of the rainfall model parameters was the major source of error.

2.8  Summary and Recommendations for Further Research

The general impression to be gained from most of the literature on the analysis of peak flood
flow rates is that the best method available for regional flood frequency analysis (RFFA) is an
index flood method based on the generalised extreme value (GEV) or Wakeby (WAK)
distribution and L-moments. It avoids the inherent weakness in station year methods (bias
due to neglecting inter-site dependence) and might have more utility than Bayesian methods.
However, the degradation in performance of index flood methods for high C,(C,) and M(C,),
recent application of multiscaling theory to RFFA, the support that the theory lends to the
empirical Quantile Regression method used by the U.S. Geological Survey, and the
observation that C, may vary with or approximately inversely with catchment area according
to catchment scale, suggest that the index flood method should be viewed with some
scepticism. Thus the assumptions of the index flood and multiscaling methods require
immediate and thorough investigation using observed data from a variety of hydro-climatic
regimes. Particular attention should be given to the applicability of both methods and the
quantification of the benefits gained by using regional rather than at-site estimators of flood
quantiles at gauged sites. Other potentially fruitful areas for continued investigation are the
catchment response time method of Potter and Faulkner {1987] wherein the ratio of drainage
area to time-to-peak .is used as a indicator of flood quantiles and the combination of rainfall-
runoff modelling and the catchment response time method as proposed by Bradley and Potter
[1992].

A critical component of the index flood, multiscaling theory and catchment response time
methods is the delineation of homogeneous hydrological regions. While much work has been
done in this area, it is still not an issue that can be approached with any degree of confidence.
Topics worthy of immediate attention are the identification of the key catchment
characteristics that are responsible for similarities in hydrologic response as measured by
statistics of annual flood peaks and volumes and the extent to which the region of influence
(ROI) approach is superior to the use of regions based on geographically contiguous areas. In
determining homogeneous regions, the entire flood hydrograph should be considered in that
this may extract more information on the hydrologic response of catchments from the
available data.
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Although the current performance of the derived distribution approach is inadequate for
immediate application, it may hold promise as a means of improving the physical basis of
flood frequency analysis and scientific understanding of the flood process. Further work is
needed with alternative rainfall, infiltration and catchment response models. Although the
development of improved rainfall models and parameter estimation procedures are the most
important tasks, work on the derived distribution approach should be given a low priority for
the time being.

2.9 References

Abrahams, A.D. (1972). Factor analysis of drainage basin properties: Evidence of stream
abstraction accompanying the degradation of relief. Water Resour. Res., 8(3): 624-633.

Acreman, M.C. and Sinclair, D. (1986). Classification of drainage basins according to their
physical characteristics: An application for flood frequency in Scotland. J. Hydrol., 84: 365-
380.

Acreman, M.C. and Wiltshire, S.E. (1989). The regions are dead; long live the regions.
Methods of identifying and dispensing with regions for flood frequency analysis. In:
FRIENDS in Hydrology, Proceedings of an International Conference, edited by L. Roald, K.
Nordseth, and K.A. Hassel, IAHS Publ. No. 187: 175-188.

Adamowski, K. (1985). Nonparametric kernel estimation of flood frequencies. Water
Resour. Res., 21(11): 1585-1590.

- Adamowski, K. (1989). A Monte Carlo comparison of parametric and nonparametric
estimation of flood frequencies. J. Hydrol., 108: 295-308.

Adamowski, K. and Feluch, W. (1990). Nonparametric flood-frequency analysis with
historical information. J. Hydraul. Eng., Am. Soc. Civ. Eng., 116(8): 1035-1047.

Andrews, D.F. (1972). Plots of high dimensional data. Biometrics, 28: 125-136.

Arnell, N.W. and Gabriele, S. (1988). The performance of the two-component extreme value
distribution in regional flood frequency analysis. Water Resour. Res., 24(6): 879-887.

Ashkanasy, N.M. (1985). To Bayes or not to Bayes - the future direction of statistical
approaches in hydrology. Hydrol. and Water Resour. Symp. 1985, Inst. Eng. Aust., Natl
Conf. Publ. No. 85/2: 76-80.

Bates, B.C. and Sumner, N.R. (1991). RECRES: A FORTRAN 77 program for detecting
model misspecification in multiple linear regression. Computers & Geosciences, 17(1): 91-

114,

Benson, M.A, (1962a). Evolution of methods for evaluating the occurrence of floods. U.S.
Geol. Surv. Water Supply Pap. 1580-A, 30pp.

Benson, MLA. (1962b). Factors influencing the occurrence of floods in a humid region of
diverse terrain. U.S. Geol. Surv. Water Supply Pap. 1580-B, 64pp.

26



Beran, M., Hosking, J.R. M. and Armell, N. (1986). Coniment on "Two-component extreme
value distribution for flood frequency analysis." Water Resour. Res., 22(2): 263-266.

Bhaskar, N.R. and O'Connor, C.A. (1989). Comparison of method of residuals and cluster
analysis for flood regionalization. J. Water Resour. Plann. and Manage., Am. Soc. Civ. Eng.,
115(6): 793-808.

Blake, G.I., Cook, A.D. and Greenall, D.H. (1970). The use of principal component factor
analysis to establish the uniformity of a hydrological region in Northland, New Zealand. In:
Results of Research Representative and Experimental Basins, Proceedings of the Wellington
Symposium, IAHS Publ. No. 96: 183-200.

Box, G.E.P. and Cox, D.R. (1964). An analysis of transformations. J. R. Statist. Soc. Ser. B,
26(2): 211-252.

Bradley, A.A. and Potter, K.W. (1992). Flood frequency analysis of simulated flows. Water
Resour. Res., 28(9): 2375-2385.

Bras, R.L., Gaboury, D.R., Grossman, D.S., and Vicens, G.J. (1985). Spatially varying
rainfall and flood risk analysis. J. Hydraul. Eng., Am. Soc. Civ. Eng., 111(5). 734-773.

Burn, D.H. (1988). Delineation of groups for regional flood frequency analysis. J. Hydrol.,
104: 345-361.

Burn, D.H. (1989). Cluster analysis as applied to regional flood frequency. J. Water Resour.
Plann. and Manage., Am. Soc. Civ. Eng., 115(5): 567-582. .

Burn, D.H. (19904). An appraisal of the "region of influence” approach of flood frequency
analysis. Hydrol. Sci. J., 35: 149-163.

Burn, D.H. (1990b). Evaluation of regional flood frequency analysis with a region of
influence approach. Water Resour. Res., 26(10): 2257-2265.

Burn, D.H. and Boorman, D.B. (1993). Estimation of hydrological parameters at ungauged
catchments. J. Hydrol., 143: 429-454,

Cadavid, L., Obeysekera, J.T.B. and Shen, HW. (1991). Flood-frequency derivation from
kinematic wave. J. Hydraul. Eng., Am. Soc. Civ. Eng., 117(4): 489-510.

Carrigan, P.H. Jr (1971). A flood-frequency relation based on regional record maxima. U.S.
Geol. Surv. Prof. Pap. 434-F.

Cavadias, G.S. (1990). The canonical correlation approach to regional flood estimation. In:
Regionalization in Hydrology, Proceedings of the Ljubljana Symposium, edited by M.A.
Beran, M. Brilly, A. Becker, and O. Bonacci, IAHS Publ. No. 191: 171-178.

Chander, S., Spolia, S.K. and Kumar, A. (1978). Flood frequency analysis by power
transformation. J. Hydraul. Div., Am. Soc. Civ. Eng., 104(HY11): 1495-1504.

27



Cong, S. and Xu, Y. (1987). The effect of discharge measurement error in flood frequency
analysis. J. Hydrol., 96: 237-254.

Cook, B.G., Laut, P., Austin, M.P.,, Body, D.N.,, Faith, D.P., Goodspeed, M.J., and
Srikanthan, R. (1988). Landscape and rainfall indices for prediction of streamflow
similarities in the Hunter Valley, Australia. Water Resour. Res., 24(8): 1283-1298.

Cruff, R.W. and Rantz, S.E. (1965). A comparison of methods used in flood-frequency
studies for coastal basins in California. U.S. Geol. Surv. Water Supply Pap. 1580-E, 56pp.

Cunnane, C. (1988). Methods and merits of regional flood frequency analysis. J. Hydrol.,
100: 269-290.

Cunnane, C. and Nash, J.E. (1974). Bayesian estimation of frequency of hydrologic events.
In: Mathematical Models in Hydrology, Vol. 1, Proceedings of the Warsaw Symposium,
IAHS Publ. No. 100; 47-55.

Dalrymple, T. (1960). Flood frequency methods. U.S. Geol. Surv. Water Supply Pap. 1543-
A: 11-51.

Dawdy, D.R. (1961). Variation of flood ratios with size of drainage area. U.S. Geol. Surv.
Prof. Pap. 424-C, Paper C36.

Dawdy, D.R., Lichty, R'W. and Bergmann, JM. (1972). A rainfall-runoff model for
estimation of flood peaks for small drainage basins. U.S. Geol. Surv. Prof. Pap. 506-B, 28pp.

Decoursey, D.G. (1973). Objective regionalization of peak flow rates. In: Floods and
Droughts, Proceedings of the 2nd International Symposium on Hydrology, edited by E.F.
Schulz, V.A. Koelzer and K. Mahmood, Sept. 11-13, 1972, Fort Collins, Col., pp.395-405.

Diaz-Granados, M.A., Valdes, JB. and Bras, R.L. (1984). A physically based flood
frequency distribution. Water Resour. Res., 20(7). 995-1002.

Ding, J., Song, D. and Yang, R. (1989). Further research on application of probability
weighted moments in estimating parameters of the Pearson type three distribution. J.
Hydrol., 110: 239-257.

Dooge, J.C.I. (1986). Looking for hydrologic laws. Water Resour. Res., 22(9): 465-588S.
Eagleson, P.S. (1972). Dynamics of flood frequency. Water Resour. Res., 8(4): 878-898.
Fiorentino, M., Gabriele, S., Rossi, F., and Versace, P. (1987). Hierarchical approach for
regional flood frequency analysis. In: Regional Flood Frequency Analysis, edited by V.P,
Singh, D. Reidel, Dordrecht, Holland, pp.35-49.

Fiorentino, M., Versace, P. and Rossi, F. (1985). Regional flood frequency estimation using
the two-component extreme value distribution. Hydrol. Sci. J., 30: 51-64.

28



Gabricle, S. and Armell, N. (1991). A hierarchical approach to regional flood frequency
analysis. Water Resour. Res., 27(6): 1281-1289.

Gingras, D. and Adamowski, K. (1993). Homogenebus regions delineation based on annual
flood generation mechanism. Hydrol. Sci. J., 38: 103-121.

Greenwood, J.A., Landwehr, J.M., Matalas, N.C., and Wallis, J.R. (1979). Probability
weighted moments: Definition and relation to parameters of several distributions expressible
in inverse form. Water Resour. Res. 15(5): 1049-1054.

Greis, N.P. (1983). Flood frequency analysis: A review of 1979-1982. U.S. Natl. Rep. Int.
Union Geod. Geophys. 1979-1982, Rev. Geophys., 21(3): 699-706.

Greis, N.P. and Wood, E.F. (1981). Regional flood frequency estimation and network design.
Water Resour. Res. 17(4): 1167-1177. Correction, Water Resour. Res. 19(2): 589-590, 1983.

Guo, S.L. and Cunnane, C. (1991). Evaluation of the usefulness of historical and
palaeological floods in quantile estimation. J. Hydrol., 129 245-262.

Gupta, V.K. and Dawdy, D.R. (1994). Regional analysis of flood peaks: Multiscaling theory
and its physical basis. In: Advances in Distributed Hydrology, edited by R. Rosso, A. Peano,
I. Becchi, and G.A. Bempoard, Water Resources Publications, Littleton, Col., pp.149-168.

Gupta, V.K., Mesa, O.J. and Dawdy, D.R. (1994). Multiscaling theory of flood peaks:
Regional quantile analysis. Water Resour. Res., (in press).

Gupta, V.K. and Waymire, E. (1990). Multiscaling properties of spatial rainfall and river
flow distributions. J. Geophys. Res., 95(D3); 1999-2009.

Gupta, V.K., Waymire, E. and Wang, C.T. (1980). A representation of an instantaneous unit
hydrograph from geomorphology. Water Resour. Res., 16(5): 855-862.

Hawley, M.E. and McCuen, R.H. (1982). Water yield estimation in western United States. J.
Irrig. Drain. Div., Am. Soc. Civ. Eng., 108(IR1): 25-34.

HEC-1 Flood Hydrograph Package Users Manual (1981). U.S. Army Corps of Engrs.,
Hydrologic Eng. Ctr., Davis, Calif.

Hebson, C. and Wood, EF. (1982). A derived flood frequency distribution using Horton
Order Ratios. Water Resour. Res., 18(5): 1509-1518.

Hjalmarson, H.W. and Thomas, B.E. (1992). New look at regional flood-frequency relations
for arid lands. J. Hydraul. Eng., Am. Soc. Civ. Eng., 118(6). 868-886.

Hosking, J.R.M. (1987). Correlation and dependence among annual flood series. In: Review

of statistical flood frequency estimation, Open File Rep. No. 9, Inst. Hydrology, Wallingford,
3%pp.

29



Hosking, J.R.M. (1990). L-moments: Analysis and estimation of distributions using linear
combinations of order statistics. J. R. Statist. Soc. Ser. B, 52(1): 105-124.

Hosking, J.R.M. and Wallis, J.R. (1986). The value of historical data in flood frequency
analysis. Water Resour. Res., 22(11): 1606-1612.

Hosking, J.R.M. and Wallis, J.R. (1988). The effect of intersite dependence on regional flood
frequency analysis. Water Resour. Res., 24(4): 588-600.

Hosking, J.R.M. and Wallis, J.R. (1990). Regional flood frequency analysis using L-
moments. /BM Math. Res. Rep. RC 15658, IBM T.J. Watson Research Center, Yorktown
Heights, N.Y., 12pp.

Hosking, J.R.M. and Wallis, J.R. (1991). Some statistics useful in regional frequency
analysis. IBM Math. Res. Rep. RC 17096, IBM T.J. Watson Research Center, Yorktown
Heights, N.Y., 23pp.

Hosking, JR.M. and Wallis, J.R. (1993). Some statistics useful in regional frequency
analysis. Water Resour. Res. 29(2): 271-281.

Hosking, J.R.M., Wallis, J.R. and Wood, E.F. (1985a). An appraisal of the regional flood
frequency procedure in the UK Flood Studies Report. Hydrol. Sci. J., 30: 85-109.

Hosking, JR.M., Wallis, J.R. and Wood, E.F. (1985b). Estimation of the generalized
extreme-value distribution by the method of probability-weighted moments. Technometrics,
27(3): 251-261.

Houghton, J.C. (1978). Birth of a parent: The Wakeby distribution for modeling flood flows.
Water Resour. Res., 14(6): 1105-1115.

Hughes, J.M.R. (1987). Hydrological characteristics and classification of Tasmanian rivers.
Aust. Geog. Studies, 25(1). 61-82.

Hughes, J.M.R. and James, B. (1989). A hydrological regionalisation of streams in Victoria,
Australia, with implication for stream ecology. Aust. J. Mar. Freshwater Res., 40: 303-326.

IACWD (1982).‘ Guidelines for determining flood flow frequency. Interagency Advisory
Committee on Water Data, Bulletin 17B of the Hydrology Sub-committee, Office of Water
Data coordination, U.S. Geol. Surv., U.S. Dept of the Interior.

IEA (1987). Australian rainfall and runoff: A guide to flood estimation. Vol. 1, Institution of
Engineers Australia, Canberra, 374pp.

Jakubowski, W. (1992). The application of probability weighted moments in estimating the
parameters of a Pearson type three distribution - Comment. J. Hydrol., 136: 395-399.

Jarrett, R.D. (1987). Errors in slope-area computations of peak discharges in mountain
streams. J. Hydrol., 96: 53-67.

30



Jin, M. and Stedinger, J.R. (1989). Flood frequency analysis with regional and historical
information. Water Resour. Res., 25(5): 925-936.

Kirby, W. (1974). Algebraic boundedness of sample statistics. Water Resour. Res., 10(2):
220-222.

Kirby, W.H. (1987). Linear error analysis of slope-area discharge determinations. J. Hydrol.,
96: 125-138.

Kirby, W.H and Moss, M.E. (1987). Summary of flood-frequency analysis in the United
States. J. Hydrol., 96: 5-14.

Kuczera, G. (1982a). Robust flood frequency models. Water Resour. Res., 18(2). 315-324.

Kuczera, G. (1982b). Combining site-specific and regional information: An empirical Bayes
approach. Water Resour. Res., 18(2): 306-314.

Kuczera, G. (1983a). A Bayesian surrogate for regional skew in flood frequency analysis.
Water Resour. Res., 19(3): 821-832.

Kuczera, G. (1983b). Effect of sampling uncertainty and spatial correlation on an empirical
Bayes procedure for combining site and regional information. J. Hydrol., 65: 373-398.

Langbein, W.B. (1949). Annual floods and the partial duration flood series. Trans. Am.
Geophys. Union, 30: 879-881.

Laut, P., Austin, M.P., Goodspeed, M.J., Body, D.N., and Faith, D.P. (1984). Hydrologic
classification of sub-basins in the Macleay valley, New South Wales. Civil Eng. Trans., Inst.
Engrs, Aust., CE26(2): 218-223.

Lettenmaier, D.P. and Potter, K.W. (1985). Testing flood frequency estimation methods
using a regional flood generation model. Water Resour. Res., 21(12): 1903-1914.

Lettenmaier, D.P., Wallis, J.R. and Wood, E.F. (1987). Effect of regional heterogeneity on
flood frequency estimation. Water Resour. Res., 23(2): 313-323.

Levy, P. (1924). Theoreie des erreurs: La loi de Gauss et les lois exceptionlles. Bull. Soc.
Math., 52: 49-85.

Lichty, R.W. and Karlinger, M.R. (1990). Climate factor for small-basin flood frequency.
Water Resour. Bull., 26(4): 577-586.

Macqueen, A.D. (1979). A flood frequency model: Alice Springs area. Proc. Hydrol. and
Water Resour. Symp., IE Aust., Natl. Conf. Publ. No. 79/10: 39-40.

Matalas, N.C., Slack, J.R. and Wallis, J.R. (1975). Regional skew in search of a parent.
Water Resour. Res., 11(6): 815-826.

31



McDermott, G.E. and Pilgrim, D.H. (1983). A design flood method for arid western New
South Wales based on bankfull estimates. Civ. Eng. Trans., IE Aust., CE25: 114-120.

Mosley, M.P. (1981). Delimitation of New Zealand hydrologic regions. J. Hydrol., 49: 173-
192.

Moughamian, M.S., McLaughlin, D.B and Bras, R.L. (1987). Estimation of flood frequency:
An evaluation of two derived distribution procedures. Water Resour. Res., 23(7):1309-1319.

Nathan, R.J. and McMahon, T.A. (1990). Identification of homogeneous regions for the
purpose of regionalisation. J. Hydrol., 121: 217-238.

Nathan, R.J. and Weinmann, P.E. (1991). Application of at-site and regional flood frequency
analyses. Proc. Int. Hydrol. Water Resour. Symp., Inst. Engrs. Aust., Natl. Conf. Publ. No.
91/22, 3: 769-774.

NERC (1975). Flood Studies Report, Vol. 1, Hydrological Studies. Natural Environment
Research Council, London.

Philip, J.R. (1957). The theory of infiltration, 4, Sorptivity and algebraic infiltration
equations. Soil Sci., 84: 257-264. :

Potter, K.W. (1987). Research on flood frequency analysis: 1983-1986. U.S. Natl. Rep. Int.
Union Geod. Geophys. 1983-1986, Rev. Geophys., 25(2): 113-118.

Potter, K.W. and Faulkner, E.B. (1987). Catchment response time as a predictor of flood
quantiles, Water Resour. Bull., 23(5): 857-861.

Potter, KW. and Lettenmaier, D.P. (1990). A comparison of regional flood frequency
estimation methods using a resampling method. Water Resour. Res., 26(3): 415-424.

Potter, K.W. and Walker, J.F. (1981). A model of discontinuous measurement error and its
effects on the probability distribution of flood discharge measurements. Water Resour. Res.,
17(5): 1505-1509.

“Potter, K.W. and Walker, J.F. (1982). Modeling the error in flood discharges. In: Time
Series in Hydrosciences, edited by A.H. El-Shaarawi and S.R. Esterby, Vol. 17 of
Developments in Water Science, Elsevier, Amsterdam, The Netherlands, pp.405-413.

Raines, T.H. and Valdes, JB. (1993). Estimation of flood frequencies for ungaged
catchments. J. Hydraul. Eng., Am. Soc. Civ. Eng., 119(10): 1138-1154.

Ribeiro-Correa, J. and Rousselle, J. (1993). A hierarchical and empirical Bayes approach for
the regional Pearson Type III distribution, Water Resour. Res., 29(2): 435-444.

Riggs, H.C. (1973). Regional analysis of streamflow characteristics. U.S. Geol. Surv. Water
Resour. Invest. Tech., Book 4, 15pp.

32



Roald, L.A. (1989). Application of regional flood frequency analysis to basins in Northwest
Europe. In: FRIENDS in Hydrology, Proceedings of an International Conference, edited by
L. Roald, K. Nordseth, and K.A. Hassel, IAHS Publ. No. 187: 163-173.

Rodriguez-Iturbe, 1. and Valdes, J.B. (1979). The geomorphological structure of hydrologic
response. Water Resour. Res., 15(6): 1409-1420.

Rodriguez-Iturbe, I., Gonzales-Sanabria, M. and Bras, R.L. (1982a). A geomorphoclimatic
theory of the instantaneous unit hydrograph. Water Resour. Res., 18(4): 877-886.

Rodriguez-ITturbe, I, Gonzales-Sanabria, M. and Caamano, G. (1982b). A geomorpho-
climatic theory of the instantaneous unit hydrograph. Water Resour. Res., 18(4): 887-903.

Rossi, F., Fiorentino, M. and Versace, P. (1984). Two-component extreme value distribution
for flood frequency analysis. Water Resour. Res., 20(7): 847-856.

Rossi, F., Fiorentino, M. and Versace, P. (1986). Reply to Beran et al. (1986). Water Resour.
Res., 22(2): 267-269.

Samuelson, P.A. (1968). How deviant can you be? J. Am. Statist. Ass., 63: 1522-1525.

Sivapalan, M., Beven, K. and Wood, E.F. (1987). On hydrologic similarity, 2: A scaled
model of storm runoff production. Water Resour. Res., 23(12): 2266-2278.

Sivapalan, M., Beven, K. and Wood, EF. (1990). On hydrologic similarity, 3: A
dimensionless flood frequency model using a generalized geomorphologic unit hydrograph
and partial area runoff generation. Water Resour. Res., 26(1): 43-38.

Smith, J.A. (1987). Estimating the upper tail of flood frequency distributions. Water Resour.
Res., 23(8): 1657-1666.

Smith, J.A. (1989). Regional flood frequency analysis using extreme order statistics of the
annual peak flood. Water Resour. Res., 25(2): 311-317.

Smith, J.A. (1992). ‘Representation of basin scale in flood peak distributions. Water Resour.
Res., 28(11): 2993-2999.

Song, D. and Ding, J. (1988). The application of probability weighted moments in estimating
the parameters of the Pearson Type Three distribution. J. Hydrol., 101: 47-61.

Stedinger, J.R. (1983). Estimating a regional flood frequency distribution. Water Resour.
Res., 19(2): 503-510.

Stedinger, J.R. and Tasker, G.D. (1985). Regional hydrologic analysis, 1. Ordinary, weighted
and generalised least squares compared. Water Resour. Res., 21(9): 1421-1432. Correction,
Water Resour. Res., 1986, 22(5); 844.

33



Stedinger, JR. and Tasker, G.D. (1986). Regional hydrologic analysis, 2. Model-error
estimators, estimation of sigma and log-Pearson type 3 distributions. Water Resour. Res.,
22(10): 1487-1499.

Stedinger, J.R., Vogel, RM. and Foufoula-Georgiou, E. (1993). Frequency analysis of
extreme events. In: Handbook of Hydrology, edited by D.R. Maidment, McGraw-Hill, N.Y.,
Chap. 18.

Tasker, G.D. (19824). Simplified testing of hydrologic regression regions. J. Hydraul. Div.,
Am. Soc. Civ. Eng., 108(HY10): 1218-1222.

Tasker, G.D. (1982b). Comparing methods of hydrological regionalization. Water Resour.
Bull., 18(6): 965-970.

Tasker, G.D. and Stedinger, J.R. (1986). Regional skew with weighted LS regression. J.
Water Resour. Plann. and Manage., Am. Soc. Civ. Eng., 112(2): 225-237.

Wallis, J.R. (1980). Risk and uncertainties in the evaluation of flood events for the design of
hydrologic structures. Keynote Address at "Seminar on Extreme Hydrological Events: Floods
and Droughts", Erice, Italy, March 22-25, 33pp.

Wallis, J.R., Matalas, N.C. and Slack, J.R. (1974). Just a moment! Water Resour. Res.,
10(2): 211-219.

Wallis, J.R. and Wood, E.F. (1985). Relative accuracy of log Pearson I procedures. J.
Hydraul. Eng., Am. Soc. Civ. Eng., 111(7): 1043-1056.

Waylen, P.R. and Woo, M.K. (1982). Prediction of annual floods generated by mixed
processes. Water Resour. Res., 18(4): 1283-1286.

Waylen, P.R. and Woo, M.K. (1984). Regionalization and prediction of floods in the Fraser
River catchment, B.C. Water Resour. Bull., 20(6): 941-949.

White, E.L. (1975). Factor analysis of drainage basin properties: Classification of flood
behaviour in terms of basin geomorphology. Water Resour. Bull., 11(4): 676-687.

Wiltshire, S.E. (1985). Grouping basins for regional flood frequency analysis. Hydrol. Sci. J.
30(1): 151-159.

Wiltshire, S.E. (1986). Identification of homogeneous regions for flood frequency analysis.
J. Hydrol. 84: 287-302.

Wolff, C.G. and Burges, S.J. (1994). An analysis of the influence of river channel properties
on flood frequency. J. Hydrol., 153: 317-337.

34



3 REGIONALISATION OF RAINFALL-RUNOFF MODEL PARAMETERS
3.1 General Remarks

The regionalisation of rainfall-runoff model parameters allows the estimation of design flood
hydrographs for sizing hydraulic structures on and the determination of water yield from
ungauged catchments. It can also provide useful initial parameter estimates for calibrating
models of gauged catchments.

There are three broad types of rainfall-runoff models:

. Discrete flood event models (such as the unit hydrograph and runoff routing
methods) which represent a single runoff event occurring over a period
ranging from less than one hour to several days. Many of these models contain
conceptual elements with parameters that must be estimated by fitting
computed hydrographs to observed hydrographs..

. Conceptual rainfall-runoff models (CRRMs) which simulate the complete land
phase of the hydrologic cycle over an extended period of time. CRRMs
consist of a series of submodels with each representing a particular hydrologic
process. Each submodel usually includes a conceptual moisture storage
element. CRRM s are frequently used for applications such as catchment yield
analysis, the extension of streamflow records, infilling missing streamflow
records, and studies of the effects of land use and climate change on catchment
hydrology.  Typical examples include the Stanford Watershed Model
[Crawford and Linsley, 1966] and its derivative HSPF [Johanson et al., 1984},
the Sacramento Model [Burnash et al., 1973], the SFB Model [Boughton,
1984], and the MODHYDROLOG Model [Chiew and McMahon, 1991].
These models have a lumped or at most quasi-distributed structure in that
averaged or representative values of catchment characteristics must be utilised.
This leads to an implicit averaging of the modelled hydrologic processes. By
their very nature, these models have parameters that must be estimated by
fitting computed hydrographs to observed hydrographs.

. Distributed parameter catchment models which use physically-based process
equations to simulate the spatial variability of runoff due to spatial variations
in land characteristics such as soil type and topography as well as rainfall.
Typical examples include the SHE model [Abbott et al., 1986a, b}, the
TOPOG model [e.g. O’Loughlin et al., 1989], and the THALES model
[Grayson et al., 1992]. While these models have the potential to become a
universally applicable tool, they come with the price of increased model
complexity, data requirements and computing costs. As their application is
usually limited to small catchment hydrology, they are more suited to scaling
rather than regionalisation studies.

Regionalisation of rainfall-runoff model parameters has been attempted by regressing model
parameter estimates obtained from gauged catchments on the physical characteristics of the
catchments within an assumed hydrologically homogeneous region.  The resulting
relationships are empirical and cannot be expected to be universally applicable. In general
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their application should be restricted to the regions for which they have been derived.
Successful regionalisation of the parameters of these models depends on:

. accurate estimation of model parameters for gauged catchments;

. the selection of catchment characteristics that affect catchment response to
rainfall;

) the delineation of homogeneous regions;

. the degree to which the model parameters are correlated with catchment

characteristics; and
. correct specification of the regression model for each region.

All of these depend on the availability of sufficient, good quality precipitation, potential
evapotranspiration, streamflow, climatic and catchment characteristics data.

There is an abundant literature on the regionalisation of parameters of discrete flood event
models [e.g., Singh, 1977; Weeks and Stewart, 1978; Morris, 1981; Flavell et al., 1983;
Sobinoff et al., 1983; James et al., 1987, Karlinger et al., 1987; Sabol, 1988; Yu, 1989,
Sorman and Abdulrazzak, 1990; Dyer et al., 1993] and CRRMs [e.g. Jarboe and Haan, 1974;
Egbuniwe and Todd, 1976; Magette et al., 1976; Hughes, 1985; Pirt and Bramley, 1985,
Weeks and Ashkanasy, 1985; Srikanthan et al., 1989; Lichty and Karlinger, 1990]. The
accuracy and precision of the predictions obtained from the resulting parameter-catchment
characteristics relationships varies from good to very poor. This raises questions about the
utility of the procedures used, the impacts of model and data error, and the extent of our
knowledge of and capability to represent the link between catchment geomorphology and
catchment response to rainfall. Thus it has been argued that the goal of relating model
parameters to catchment characteristics has never been and may never be fully realised
[Boughton and Sefe, 1982; Larson et al., 1982; Mein and McMahon, 1982; Weeks and
Ashkanasy, 1985].

Nevertheless the work to date suffers from a number of limitations. First, subjective trial and
error fitting procedures have been used often to obtain model parameter estimates. This
compromises the reproducibility of the estimates and can introduce bias [James, 1972; James
and Burges, 1982; Weeks and Ashkanasy, 1985). Second, the homogeneous regions
identified in these studies were based on geographically contiguous areas which might not
make the best use of information available on the hydrologic similarity of catchments (see
Section 2-3). Third, a multiple linear regression model (MLRM) has been used in almost
every case to describe the model parameter-catchment characteristics relationship with little
evidence of an adequate investigation of the nature of its true functional form.

The selection of homogeneous regions is discussed in Section 2-3 and will not be repeated
here. The material below will focus on parameter estimation issues and alternative regression

models for model parameter-catchment characteristics relationships.

3.2 Estimation in Discrete Flood Event Models
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Unit hydrographs for ungauged catchments are estimated using the synthetic unit hydrograph
approach [see, e.g., Synder, 1938; Clark, 1945; Nash, 1960; Cordery and Webb, 1974; U.S.
Soil Conservation Service, 1985]. It involves the estimation of a number of parameters that
affect unit hydrograph shape from relationships between these parameters and catchment
characteristics. Typical parameters include lag time, time to peak, unit hydrograph duration,
time widths at 50 and 75% of peak flow, and runoff velocity. In most cases, estimates of
these parameters are obtained by manual methods (exceptions include the works of James et
al. {1987} and Karlinger et al. [1988]) and are regressed independently on a suite of
catchment characteristics.

A common practice for the calibration of nonlinear runoff routing models is to use manual
trail and error search to obtain estimates for the dominant parameter €, while fixing the
remaining p—1 secondary parameters (0y, ..., Ox1, O, ..., 6p) to acceptable values.
Estimates of 0, are usually obtained by fitting observed and computed surface runoff
hydrographs for individual storm events. These estimates are then combined (or pooled) to
obtain a single estimate for the catchment at hand. The pooling procedure most frequently
used is the calculation of the mean or median, A variation of this procedure is the use of
parameter interaction diagrams by Weeks [1980] and McMahon and Muller [1985] to
calibrate the RORB runoff routing model [Laurenson and Mein, 1990]. The diagrams are
constructed by selecting a range of secondary parameter values and estimating the dominant
parameter for each specified secondary parameter value. A plot of the resulting estimates
produces a paramelter interaction curve. This is repeated for all calibration events. The goal
is to obtain a set of curves which intersect coincidentally at a unique parameter pair that
provides a good fit for all events. This approach is rarely successful as the plots frequently
take the form of sets of parallel rather than intersecting curves [see, ¢.g., Bates et al., 1991].

Nonlinear regression techniques have been applied to nonlinear, discrete flood event models
[Singh, 1977, Williams and Yeh, 1983; Bates, 1988; Bates and Townley, 1988a, b; Bates,
1990: Kuczera, 1990; Bates et al., 1991; Bates et al., 1993]. Kuczera [1990] and Bates et al.
[1991, 1993] have presented evidence that estimates and the precision of the estimates of the
dominant and secondary parameters of the RORB model vary markedly from storm to storm.
The work of Bates et al. [1993] also suggests that secondary parameter estimates vary from
catchment to catchment. While these works suggest that the use of the dominant parameter
approach is flawed, current practices in the use of nonlinear regression theory are not beyond
criticism. First, no account of any errors in the synchronisation of rainfall and runoff is taken
during the estimation process. Such errors will have an adverse impact on the parameter
estimates and hence on any model parameter-catchment characteristics relationship. Second,
data transformations which favour the reproduction of small discharges at the expense of the
hydrograph crest are often used to ensure that the least squares assumptions are not violated.
While this weighting is broadly consistent with the precision of rating curves it is merely a
statistical artefact. A better approach would be to use a weighting scheme based on
quantitative information about the variation of the precision of the rating curve with
increasing discharge. Such information can be obtained from gauging authorities.

Kuczera [1990] has devised a formal parametric pooling procedure for estimates of runoff

routing model parameters which takes account of their varying precision between storm
events. The procedure relies on the identification of a parameter transformation which allows
the assumption of normality. The same transformation must be applicable to every flood

37



event. Bates et al. [1991] examined the generality of these assumptions in the application of
the RORB model to rainfall-runoff data sets from three Western Australian catchments. They
found that Kuczera's distributional assumptions were untenable in every case and suggested
that an alternative pooling method needed to be found.

3.3  Estimation in Conceptual Rainfall-Runoff Models

The application of automatic parameter estimation procedures to CRRMs has received
considerable attention over the last two decades [e.g. Johnston and Pilgrim, 1976; Sittner,
1976; Sooroshian and Dracup, 1980; Boughton and Sefe, 1982; Kuczera, 1983; Alley, 1984;
Gan and Burges, 1990a, b; Chiew et al., 1993; Sorooshian et al., 1993; Bates 1994, Bates et
al., 1994]. Many of these studies have reported difficulties in obtaining global and feasible
parameter estimates. These difficulties have been attributed to: parameter interdependence;
model and data error, nonconvexity of the response surface defined by the objective function;
inconsistencies due to the spatial averaging of catchment properties and input data;
discontinuous derivatives; and the existence of multiple optima.

Catchment dynamics, scale and climate dictate the minimum time step necessary to represent
all significant hydrologic processes. There are many situations where available data do not
conform with the minimum time step indicated by the dynamics. For example, in most
Australian applications, CRRMs are driven by daily rainfall totals and estimates of daily
potential evapotranspiration. This is largely due to the paucity of rainfall data for smaller
time scales., Assessments of model fit are usually made by comparison of observed and
computed monthly runoff totals [see, e.g., Johnston and Pilgrim, 1976; Boughton and Sefe,
1982; Kuczera, 1983; Nathan and McMahon, 1990; Chiew et al., 1993; Bates, 1994; Bates et
al., 1994]. In studies where automated parameter estimation methods have been used, the
most general objective function used can be defined by

S©) = ™Y 72 3-1)
1=k
where
z = g - oM - g — QuM/A, A%0 (3-24)
[0)3
7z = [(logg: — log @) — ¢(log gr — log Q). A=0 (3-2b)

is the disturbance for the rth month in the calibration period, 8 = (9, ..., GP)T, n is the number
of months in the calibration period, g, is the observed runoff for the sth month, Q, is the
computed runoff for the rth month, A is a transformation constant, ¢ is the parameter for a
first-order autoregressive process, k = 1 for $ = 0, and k =2 for ¢ # 0. The use of A =1
favours reproduction of large flows while the reproduction of small flows is favoured when A
< 1.

A variety of local search algorithms have been used to calibrate CRRMs. They include the
use of: steepest descent by Boughton and Sefe {1982]; direct search method of Rosenbrock
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[1960] by Alley [1994]; the simplex method of Nelder and Mead [1965] by Johnston and
Pilgrim [1976], Sorooshian and Dracup [1980] and Weeks and Ashkanasy [19835]; the Gauss-
Marquardt algorithm [see Bard, 1974] by Kuczera [1983]; and the pattern search method of
Hooke and Jeeves [1961] by Hendrickson et al. [1988] and Chiew et al. [1993). With these
methods, several optimisation runs with different initial parameter estimates are usually
performed and the best result is retained as the candidate for the global optimum 0. Such an
approach may be described as a deterministic global optimisation procedure. Although this
multistart approach is more efficient than a pure random search, it will cause each local
minimum to be found several times.

Stochastic global optimisation methods are now a viable alternative to deterministic local
search procedures. In these methods the minimisation process depends partly on probabilistic
events. Under mild conditions on S(6), stochastic methods guarantee asymptotic convergence
to 0" as the number of sample points increases. Successful application of these methods to
practical problems still requires a very large number of function evaluations (CRRM runs).
Nevertheless, they are time efficient because of the computing speeds now available and often
produce better results than deterministic methods [Corana et al., 1987; Eglese, 1990]. The
works of Duan et al. [1992], Sorooshian‘et al. [1993] and Bates [1994] have confirmed these
findings for CRRMs.

Wang [1991) described and applied a genetic algorithm to the calibration of the Xinanjiang
Model developed by Zhao et al., [1980]. The method searches among a population of points
and works with a binary coding of the parameter set rather than parameter values. An initial set
of points is chosen at random and S(6) values computed for each point. A new set of points is
generated using a partially random selection that is concentrated in the vicinity of those points
which have low S(8) values. The new set of points forms the basis for the next iteration of
the search. A record is kept of the best point found during the estimation process. The
process is continued until a prespecified number of function evaluations is reached. The
resuiting estimates can be further tuned by applying a conventional local search method. The
genetic algorithm is analogous to the concept of the survival of the fittest in the theory of
natural selection.

Duan et al. [1992, 1994] and Sorcoshian et al, [1993] described a shuffled complex evolution
algorithm (SCE-UA) and applied it to the Sacramento Model. The SCE-UA method involves
the initial selection points distributed randomly throughout the feasible parameter space. These
points are partitioned into several ‘complexes’ with each complex consisting of 2p + 1 points.
Each complex is allowed to search the parameter space (or ‘evolve’) independently using a
modified simplex method. After a prescribed number of steps, the complexes are ‘shuffled” and
new complexes are formed using the information obtained from the independent searches. The
evolution and shuffling procedures are repeated until the prescribed stopping criteria are met.

Bates [1994] described and applied a three-phase simulated annealing algorithm (SA-SX) to
the calibration of the SFB Model [Boughton, 1984]. In the first (or presampling) phase,
(p+1)” parameter vectors are randomly generated and sorted according to their S(8)’s. The
parameter vectors that produce the (p+1)th smallest S(8) values form the initial Nelder-Mead
simplex. In the second (or global) phase, simulated annealing (SA) is used until the
algorithm is close to converging to a minimum. SA was proposed by Kirkpatrick et al.
(1983] as a method for minimising multivariate functions. It is an iterative stochastic method
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that has the ability to migrate through a sequence of local minima in search of the global
solution. This is achieved by accepting steps corresponding to a decrease in S(0) as well as
steps corresponding to an increase in 5(8). The latter is done in a limited way by means of a
stochastic acceptance criterion. This makes it possible to escape from a local minimum and
to explore the parameter space entirely. In the course of the optimisation process, the
probability of accepting moves which increase S(8) decreases slowly to zero. SA is especially
attractive when S(8) is not smooth or continuous in its domain as the method does not require
the calculation of derivatives. Rather than waste time attempting uphill steps that will always
be rejected, the annealing process is stopped and in the third (or local) phase the simplex
(SX) method is used to locate a candidate global optimum.

Although the results of research on the application of stochastic optimisation methods to
CRRMs is encouraging, the amount of testing done so far is small. Many of these methods
contain algorithmic parameters which can have a marked effect on performance. Values for
these parameters have to be decided a priori and there is little guidance in the literature on
parameter selection. The development of guidelines for algorithmic parameter selection, and
a comprehensive comparison of the performances of the genetic, SCE-UA and SA-SX
methods, would be useful steps in improving parameter estimation in CRRMs.

34  Regression Models for Parameter-Catchment Characteristics Relationships

Tn the absence of any formal physically-based scheme for the regionalisation of rainfali-runoff
mode! parameters, resort has been made to regression modelling.  Consider the
regionalisation problem consisting of a p-parameter rainfall-runoff model, a homogeneous
region consisting of n catchments, and g (possibly log-transformed) catchment characteristics.
The relationship between the ith parameter and the catchment characteristics is almost
universally represented by the multiple linear regression equation:

6 = XB+¢ (33)

where 0; is the n % 1 vector of 6; estimates, X is the n X (g+1) matrix of observations on the
catchment characteristics, B is the (g+1) X 1 vector of unknown regression parameters, and €
is the n X 1 vector of error terms which are assumed to be independent and identically
distributed normal random variables with mean zero and unknown variance o

The use of (3-3) is predicated on two major assumptions: (1) the correlations between 0; and
the remaining (p—1) parameters are negligible; and (2) the functional form of (3-3) is correct.
For discrete event models, it is often assumed that: (1) the values of any secondary parameters
are constant across catchments within the homogeneous region; and (2) the precision of the 6;
estimates is constant across events and hence that simple averaging of the estimates for
individual events is an appropriate pooling procedure for each catchment.

The functional form of (3-3) has no theoretical support; its prevalence in the literature may be
due primarily to the general availability of computer software for fitting MLLRMs to data.
Although regression diagnostics has now reached an advanced state [see e.g., Belsley et al.,
1980; Bates and Sumner, 1991], there have until recently been few useful tools for identifying
nonlinear relationships in multivariate data.
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Generalised additive models (GAMs) offer a flexible way of identifying nonlinearities by
allowing the data to suggest their form through the application of nonparametric scatterplot
smoothers [Hastie and Tibshirani, 1990]. An additive regression model for the ith model
parameter has the general form

0.X) = Bo + filk) + .o + fy(Xp) 34)

where each of the x; (j = 1, ..., g) are predictors (catchment characteristics), the f; are smooth
functions of the predictors (usually involving parameters) to be estimated, and Bo is the
intercept term. The terms in the righthand side of (3-4) may be parametric compound or even
multivariate nonparametric variables. Thus they can be used in a diagnostic mode as a tool
for suggesting parametric transformations (such as logarithm, polynomial and sinusoid) or
alternative forms for the terms in the model. Once appropriate transformations have been
discovered, subsequent fitting and testing can be based on these parametric transformations.

There is a link between GAMs and the Andrews’ [1972] curves used by Dyer et al. [1993].
An Andrews curve is defined by

fx) = 7’51_2_ + x, sin(t) + x; cos(t) + x, sin(2t) + x;cos(21) + ... (3-3)

where x|, xa, ... are the variables used to characterise a catchment and —nt <t < 7. Equation
(3-5) is similar in form to (3-4). However, (3-5) characterises the g-dimensional space defined
by the catchment variables for a single catchment as a two-dimensional curve whereas (3-4)
expresses the relationship between the ith model ‘parameter and values of the catchment
variables for all of the catchments of interest.

Multivariate linear and multivariate nonlinear regression [Theil, 1971; Krzanowski, 1988,
Bates and Watts, 1988} provide a means of deriving parametric parameter-catchment
characteristics relationships when estimates for more than one model parameter (response)
are available and the model parameter estimates are found to be highly correlated with each
other. Here information from all the model parameters can be combined to provide more
precise regression parameters and to determine more realistic function forms for model
parameter-catchment characteristics relationships. The multivariate linear regression model
can be written in the form

© = XB +E (3-6)

where © is the #n X p matrix whose ith column is 8;, B is the (g+1) X p matrix of unknown
regression parameters and E is the n X p matrix of error terms whose rows are independent
observations from a multivariate normal distribution with mean zero and dispersion X. The
multivariate nonlinear regression model may be written as

0 = fiX,B) + E 37

where f(X, B) is the regression model response function. GAMs can assist in the
identification of the functional form of f{X, B).
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If no parameter-catchment characteristics relationships can be found, geostatistics may
provide a means of deriving values for one or more of the model parameters on the basis of
geographical location alone.

3.5  Estimating Design Floods and Water Yield From Ungauged Catchments

Mein and Brown [1982] note that most ungauged catchments do not have continuous and
concurrent rainfall and evaporation data and hence that the application of CRRMs to these
catchments leads to the requirement of a synthetic input. They suggested that the generation
of synthetic daily input data was not a matter of routine. A decade later, the situation remains
largely unchanged. '

A few studies have considered the application of stochastic daily precipitation models to
Australian data at the daily time scale [e.g Wickramasuriya et al., 1982; Srikanthan and
McMahon, 1983a, b; Srikanthan, 1985; Guenni et al., 1990; McCaskill, 1992; Bates et al.,
1994; Chapman, 1994]. Most of these works have examined multi-state, first order, discrete
Markov models of daily rainfall occurrence.  Exceptions include the works of
Wickramasuriya et al. [1982] who considered the use of discrete distributions, Guenni [1990]
who used a modified Bartlett-Lewis rectangular pulses Poisson model in which the pulse
height was gamma rather than exponentially distributed, and Chapman [1994] who
considered a suite of higher order Markov models and alternating renewal process models,

Nevertheless, many other point rainfall occurrence models exist including variants of the
Bartlett-Lewis model [e.g. Onof and Wheater, 1993], Hutchinson’s [1990] three-state
continuous Markov model, the Markov renewal model of Foufoula-Georgiou and
Lettenmaier [1987], and Neyman-Scott rectangular pulse models [e.g. Entekhabi et al., 1989;
Cowpertwait, 1991]. These models have not been applied to Australian rainfall data. The
Barlett-Lewis and Neyman-Scott models hold particular promise in that they may be
applicable across a range of time scales (e.g. hourly to daily) whereas Markov chain models
are highly parameterised for fine time scales and do not, in general, adequately represent the
clustering dependencies present in observed daily rainfall occurrences [Pattison, 1963,
Foufoula-Georgiou and Lettenmaier, 1987]. Recently, emphasis has shifted towards the
modelling of precipitation in time and space over mesoscale catchments [e.g., Zucchini and
Guttorp, 1991; Bardossy and Plate, 1992; Hughes, et al., 1993].

Srikanthan [1985)], Guenni et al. {1990], McCaskill [1992] and Bates et al. [1994] have
investigated stochastic weather models for simulating daily rainfall, minimum and maximum
temperature, and solar radiation. Srikanthan also considered pan evaporation. McCaskill
[1992] and Bates et al. [1994] applied the WGEN generator of Richardson and Wright [1984]
to Australian data sets and found its performance to be deficient, The work of Guenni et al.
{1990] was limited to three Australian data sets but their generator appeared to offer
reasonable performance.

Regardless of the approach chosen, the most important requirement will be a method for

estimating appropriate stochastic weather model parameters for sites or catchments at which

there are no climatic records. This is a topic that has received very little attention in the
literature. '

3.6  Summary and Recommendations for Further Research
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'

The above review has highlighted the need for further research in almost all aspects of the
problem of regionalising rainfall-runoff model parameters. It was found that much remains to
be done with respect to parameter estimation and model] parameter-catchment characteristics
relationships. In particular, future research efforts should be concentrated on:

. improved objective function setting for parameter estimation in discrete flood
event models;

. the development of new pooling procedures for combining parameter
estimates obtained from individual storms;

. an investigation of the utility and performance of stochastic optimisation
algorithms for parameter estimation in conceptual rainfall-runoff models
(CRRMs); and

. a more thorough exploration of the functional form of model parameter-

catchment characteristics relationships.

The problem of delineating homogeneous hydrological regions has received little attention in
this Section. Nevertheless, it merits serious attention; the identification of homogencous
regions will have a direct bearing on the usefulness of any regionalisation of rainfall-runoff
model] parameters.

The problem of estimating water yield from ungauged catchments will require the
development of improved stochastic weather models for generating synthetic input data for
CRRMs. This is a topic for future research effort.
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4. LOW FLOW ESTIMATION
4.1 General Remarks

Abnormally low streamflow is the most notable characteristic of a hydrologic drought,
defined by Dracup et al. [1980] as a period of streamflow deficiency. This section of the
report examines procedures for the calculation of low flow statistics from observed data and
their estimation at ungauged sites. There is a plethora of low flow statistics which quantify
different aspects of low flow regimes and have different applications. These include [Nathan
and McMahon, 1990a; Gustard et al., 1992; Nathan and Weinmann, 1993]:

. simple, descrlpuve statistics of daily, monthly and annual flows (e.g,
minimum, maximum, mean, standard deviation, standard errors of the mean
and standard deviation, coefficients of variation and skewness, and lag-one
serial correlation);

. flow regime statistics (such as: a baseflow index (BFI) related to the ratio of
baseflow volume to total streamflow volume; Colwell’s (1974) indices of
predictability, constancy and contingency; and the percentage of time that the
catchment ceases to flow);

. flow duration curves for daily, monthly and annual flows;

. flow frequency curves (e.g., annual minima for durations rangihg from 1 day
to six months);

. low flow spells (duration below a given threshold; frequency with which flow
remains continuously below a given threshold for a given duration);

. deficiency volumes of low flow spells (below a given threshold; frequency of
requirement for a given volume of water to maintain a given threshold flow);

. streamflow recession constant;

. storage yield (storage required to meet a specified draft at a given level of
reliability);

. time to accumulate a given runoff volume with a given frequency of

occurrence; and

. conceptual rainfall-runoff model parameters for the conversion of rainfall into
runoff volumes.

The regionalisation of rainfall-runoff model parameters is discussed in Section 3 and will not
be repeated here. Collectively, the remaining measures incorporate information on: the time
of occurrence; duration that a threshold flow is exceeded or not exceeded; magnitude; central
tendency; variability; persistence; and the frequency of specified events. A threshold is
usually defined as some fraction of the mean daily, monthly or annual flow. In many cases,
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dimensional low flow statistics are standardised by the mean flow to enable comparison of
these statistics between catchments by removing the scale of the hydrologic response. The
information obtained from these measures is useful in reservoir design and regulation,
licensing of stream abstractions, groundwater and environmental studies, water quality
management, and the maintenance of sufficient flows for hydroelectric power generation,
irrigation, fisheries, recreation, tourism, and navigation [Gustard et al., 1992; Nathan and
Weinmann, 1993; Vogel and Fennessey, 1994].

A common thread with the regionalisation of low and high flow statistics and rainfall-runoff
parameters is the identification of homogenous regions. This issue is discussed in Section 2-3
and will not be considered further.

4.2  Calculation of Flow Statistics for Gauged Catchments

4.2.1 Simple descriptive statistics

A number of simple descriptive statistics have been used with a view to regionalisation.
These include:

. mean annual discharge [Lull and Sopper, 1966; Mustonen, 1967, Taylor, 1967,
Hawley and McCuen, 1982; Horn, 1988; Nathan and McMahon, 19904];

. mean seasonal runoff and daily mean discharge [Lull and Sopper, 1966];

. minimum ann_ual mean monthly flow [Wright, 1974];

. specific instantaneous discharge at low flow [Whitehouse et al., 1983]; and

. standard deviation, skew coefficient and first-order serial correlation
coefficient of annual streamflows [Horn, 1988; Nathan and McMahon,
1990q].

4.2.2 Baseflow and recession analysis

There is a general consensus that it is important to index the hydrogeology of catchments if
low flows are to be predicted successfully at an ungauged site [Institute of Hydrology, 1980;
Gustard et al., 1992; Nathan and Weinmann, 1993]. The BFI measures the proportion of
streamflow derived from stored sources. The use of a BFI entails the separation of baseflow
from the total streamflow hydrograph on a continuous basis. Separation techniques that have
been suggested include: empirical smoothing and separation rules [Institute of Hydrology,
1980; Gustard et al., 1992]; simple scaling techniques [Boughton, 1988]; and recursive
digital filters [Lyne and Hollick, 1979; Nathan and McMahon, 1990a, b]. Nathan and
McMahon [1990b] found that the digital filter was superior to simple smoothing and
separation in that it is better suited to the low baseflow conditions experienced within
Australia, is less variable, and is more strongly correlated with other low flow indicators. In
regionalisation procedures, the BFI has been used for cases involving stations with short
records [e.g., Gustard et al., 1992] or ungauged sites [e.g., Nathan and McMahon [1990a). In
the latter case, the BFI is estimated from readily available catchment characteristics data, and
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the estimate is used in a regional estimation equation together with other variables to compute
the desired low flow statistic.

Recession analysis examines the rate at which water is released from stored sources. It
provides a means of forecasting low flows during extended dry periods and relating low flows
to hydrogeology and geomorphology [Weyer and Karrenburg, 1970; Grant, 1971, McMahon
and Mein, 1986). Semi-logarithmic plots of hydrograph recessions can be frequently
approximated by several straight line segments. Each straight line can defined by

% = Gk’ 1)

where g, is the discharge at time ¢, go is the initial discharge, and X is the recession constant
dependent on the units of ¢. In low flow studies, interest is focused on the segments with the
highest K, values obtained during prolonged dry periods.

4.2.3 Flow duration analysis

A flow duration curve depicts the relationship between any given discharge and the
percentage of time during which that discharge is equalled or exceeded during the period of
record without regard to the sequence of flow occurrence. The flow duration curve is a
cumulative frequency distribution determined by integrating the frequency distribution of
historical flows [McMahon and Mein, 1986; Vogel and Fennessey, 1994]. Low flow indices
derived from flow duration curves include:

o parameters of exponential and third order polynomial regression models fitted
to flow duration curves [Quimpo et al.r, 1983: Mimikou and Kaemaki, 1985];

° 95 percentiles for ten day flows [Institute of Hydrology, 1980] and one day
flows [Gustard et al., 1992] denoted by Qos(10) and Qos(1), respectively;

. 0>, Os, O, Qos, and the mean. These statistics define points on a log-normal
probability plot through which a smooth curve can be drawn [Dingman, 1978];
and

. Q10 and Qg for perennial streams, or Q¢ and the percentile at which a

specified small fraction of the mean annual flow is equalled or exceeded (Qm)
for intermittent streams. A straight line joining the Qo and Qo or Q10 and Oy,
statistics on a log-normal probability plot gives an approximation to the flow
duration curve for an ungauged catchment [Nathan and McMahon, 1990a].

4.2.4 Low flow frequency

Low flow frequency curves can be used to determine the exceedance probability of a flow
event of specified magnitude. The most commonly used probability distributions for low
flow frequency analysis are the normal, log-normal, gamma, LP3, and Weibull [Chang and
Boyer, 1977; Nathan and McMahon, 1990a; Vogel and Kroll, 1990]. Nathan and McMahon
[1990¢] carried out a detailed comparison of three estimation methods (moments, maximum
likelthood and PWM) used for fitting the Weibull distribution to annual minima series for
134 Australian gauging stations. They concluded that PWM was best. Vogel and Kroll
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{1990} found that the two-parameter log-normal distribution fitted annual minimum d-day
low flow data for 23 stations in Massachusetts where d = 3, 7, 14, and 30. Flow indices used
to characterise low flow frequency curves include:

. annual minimum 7-day flow with an ARI of 10 years [Chang and Boyer, 1977];
® 7-day mean annual minimum flow [Gustard et al., 1992]; and

) proportion of zero flows or the 50 year ARI low flow event, the 2 year ARI
low flow event, and the shape parameter of Weibull distribution [Nathan and
McMahon, 1990a];

4.2.5 Spell duration and deficiency volumes

A frequency analysis of low flow spells consists of finding the longest spell duration and/or
largest deficit volume where streamflow stays below a specified threshold for each year of
record. A probability distribution is then fitted to the resulting annual maxima low flow
duration series. The Institute of Hydrology [1980] and Nathan and McMahon [1990a] have
found the maxima to be log-normally distributed. Thus Nathan and McMahon [1990a] used
the 2 year and 50 year ARI events to characterise the entire frequency curve,

Paulson et al. [1985] considered three indices of drought: (1) drought severity, defined as the
cumulative deficit volume below average annual streamflow; (2) drought magnitude, defined
as the average deficit below average annual streamflow; and (3) drought duration, defined as
the number of years where flow was continuously below average annual streamflow. Drought
severities and magnitudes for 10%, 50% and 90% exceedance probability levels were
obtained graphically using the Weibull plotting position. Drought duration was defined in
terms of: termination probabilities for the n-year drought where n = 1, 2, ..., 5; mean
termination probability, and mean drought duration. (Termination probability is defined by
dividing the number of n-year droughts by the number of droughts lasting  years or longer.}

43  Low Flow Estimation for Ungauged Catchments

The estimation of low flow statistics at ungauged sites usually relies on the classification of
catchments into physiographic types and the transfer of flow data between catchments in the
same homogeneous region. Thus the problem has much in common with regionalisation
techniques in other fields. Nathan and McMahon [1990a] note that are three possible
approaches: (1) if rainfall records are available, undertake short term stream gauging to
enable the calibration of a rainfall-runoff model, and extend (hindcast) the streamflow record;
(2) directly transfer results from a similar, adjacent gauged catchment; and (3) use regional
prediction equations. A fourth approach is to use contour maps of low flow indices fe.g.
Quimpo et al., 1983; Horn, 1988]. The second approach is contingent upon the user’s ability
to define an appropriate measure of ‘similarity’.

Nathan and McMahon [1990a] state that the costs involved in short term stream gauging are
rarely justified for small catchments and that it is rare to find cases where the direct transfer
of low flow characteristics from one catchment to another can be made with a reasonable
degree of confidence. Hawley and McCuen [1982] note that mapping is only appropriate for
indices that are highly correlated with latitude and longitude (or a similar spatial coordinate
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system), and that regional estimation equations are preferable when this correlation is weak.
Thus the regionalisation problem is usually reduced to the development of regression models
to estimate low flow statistics at ungauged sites from readily available data on geomorphic,
geologic, climatic, topographic, and land use characteristics [e.g.. Lull and Sopper, 1966;
Mustonen, 1967, Taylor, 1967, Wright, 1974; Chang and Boyer, 1977, Dingman, 1978;
Quimpo et al., 1983; Whitehouse et al., 1983; Mimikou and Kaemaki, 1985; Paulson et al.,
1985; Horn, 1988; Curran, 1990; Nathan and McMahon, 1990a; Vogel and Kroll, 1990].
Many of these studies have met with only limited success.

Most regional estimation equations conform to the MLRM defined by (3-3). Nathan and
McMahon [1990a, p. 84] give a comprehensive summary of the catchment characteristics
used. As noted in Section 3.4, there is scope to undertake more rigorous investigations of the
functional form of these equations.

44  Summary and Recommendations for Further Research

Perhaps the most pressing problems associated with low flow estimation for ungauged
catchments are the need to delineate homogeneous hydrological regions and the functional
form of low flow statistics-catchment characteristics relationships. Nathan and McMahon
[19904] note that there is a need to conduct an extensive study of the low flow hydrology of
many areas of Australia.
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5. CONCLUSIONS

This review has examined the regionalisation problem with respect to flood frequency,
rainfall-runoff model parameters and low estimation. Emphasis has been placed on the need
to obtain information for ungauged catchments since this is the problem of most interest to
practitioners.

The following have been identified as high priority areas requiring further research:

. the delineation of homogeneous hydrological regions. This work should focus
on the identification of the climatic and catchment characteristics that are
responsible for similarities in the hydrologic response of catchments;

J exploration of the functional form of the relationships between flood and low
flow quantiles, index flood, and rainfall-runoff parameters and catchment
characteristics. This work should concentrate on whether the multiple linear
regression models used in most regionalisation studies are adequate or
whetheralternative forms offer a better description of the relationships, and on
the utility of multivariate as opposed to single response regression models;

. investigation of the coupled index flood and L-moments approach,
multiscaling theory, and the catchment response time and ‘peak-to-volume’
methods. This work should focus on empirical tests of the validity of the
index flood and multiscaling theory assumptions, and the utility of the
catchment response time method relative to the index flood and multiscaling
theory approaches,

. the development and testing of improved parameter estimation techniques for
discrete flood event models;

. investigation of the utility of optimisation algorithms for estimating the
parameters of conceptual rainfall-runoff models and the development of
guidelines for their efficient operation;

The following have been identified as important areas for further research but have lower
priority:

. development and testing of stochastic rainfall models, infiltration and
catchment response models for deriving flood frequency distributions by
analytical means; and

. development and testing of stochastic weather models for sites and catchments
with no climatic records. Provided other work on the regionalisation of
rainfall-runoff models succeeds, this work will allow the estimation of water
yield from ungauged catchments.
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APPENDIX A —- NOTATION

A.l1  Acronyms and Abbreviations

AEP
ARI
CRRM
EB
EV1,EV2,EV3
GAM
GEV
GLS
GUH
IACWD
IEA
LEB
LP3
MLRM
NERC
OLS
PN
PWM
RFFA
ROI
TCEV
WAK

WLS

annual exceedance probability

average recurrence interval

. conceptual rainfall-runoff model

empirical Bayes (theory/technique)

extreme value (distribution) types 1,2 and 3
generalised additive model

generalised extreme value (distribution)
generalised least squares

geomorphological unit hydrograph
Interagency Advisory Committee on Water Data
Institution Qf Engineers, Australia

linear empirical Bayes (theory/technique)
log Pearson Type III (distribution)

multiple linear regression model

Natural Environment Research Council
ordinary least squares

power normal (distribution)

probability weighted moments

regional flood frequency analysis

region of influence (approach)
two-component extreme value (distribution)
Wakeby (distribution)

weighted least squares
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A.2  English Letters

A catchment (drainage) area

BFI baseflow index

C, coefficient of variation

E[} expectation operator

g skew coefficient

L total period od record at M gauged sites

LCV L-moment coefficient of variation (also denoted by 1)
M number of gauged sites

M(C,) mean or median C,

MSE mean-square error

N; sample size for site j

o magnitude of the largest flood discharge which occurs in a year at a

given site, Sec. 2

monthly runoff, Sec. 3

Qr flood quantile of AEP 1 in T years or ARI of T years

7] mean of the annual flood maxima series at a given site

u L-moment ratio vector

X | standardised flood discharge, Eq. (2-5)

Xr regional growth factor of AEP 1 in T or ARI of T years

X matrix of observations on catchment characteristics, Sec. 3
Z log Q

A.3  Greek Letters

Ok kth distribution or model parameter
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A " Box-Cox transformation parameter, Eq. (2-15) and Sec. 3

Ar rth L-moment
T L-moment coefficient of variation (also denoted by L CV)
T3, T4 L skewness and L kurtosis, respectively
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