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PREFACE

The Cooperative Research Centre (CRC) for Catchment Hydrology's research program
"Flood Hydrology" has the overall objective:

To improve methods for estimating flood risk and the reliability of flood
forecasting, and advance the understanding of catchment similarity and regional
behaviour.

The issues of catchment similarity and regional behaviour are specifically dealt with in
CRC Project D2 'Regionalisation and Scaling of Hydrologic Data'. A report
Regionalisation of Hydrologic Data: A Review (Bates 1994) has already been
published as a CRC Report 94/5.

This report by Geoff Lacey (University of Melbourne) provides a review of the
literature relating to scaling. This topic is relevant to many projects in the CRC; the
extrapolation of results from test plots, or small research catchments, to much larger
areas is a problem not limited to flood hydrology. Here, it is of interest to note that
Geoff proposes to develop scaling theory suitable for the issue of catchment yield as an
initial application.

Russell Mein
Program Leader, Flood Hydrology
Cooperative Research Centre for Catchment Hydrology



ABSTRACT

There are two aspects to the problem of scale in hydrology. The first is the
recognition that different laws may dominate at different scales. The second
involves the establishment of dimensionless parameters for a problem, so that a
solution can be applied to a variety of actual systems. This paper examines the
theory of scaling and the work done on the scaling of several hydrologic
phenomena. The emphasis is on work involving real catchment data; however
some modelling is also examined.

There has been reasonable success in scaling soil-water phenomena in the field.
However, as yet there have been no comparable solutions involving data for
larger scale phenomena. Work reviewed includes the scaling of surface
saturation zones; the scaling of runoff generating processes and flood
frequency using computer modelling; simple scaling and multiscaling theories
and their application to flood peaks; and fractal theory. Recommendations are
put forward for further research on the problem of scale.
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1. INTRODUCTION
1.1 The problem of scale

The importance of the problem of scale in hydrology is highlighted by Dooge
(1986) in the following terms: ‘To predict catchment behaviour reliably we
must either solve extremely complex physically based models which take full
account of the spatial variability of various parameters or else derive realistic
models. on the catchment scale in which the global effect of these spatially
variable properties is parameterized in some way. The former approach
requires extremely sophisticated models ... to have any hope of success. The
latter approach requires the discovery of hydrologic laws at the catchment scale
that represent more than mere data fitting. This is, indeed, a daunting research

task.'

There are two aspects to the problem of scale. The first, pointed out by Dooge
(1989), is that different physical laws may dominate at different scales. The
appropriate set of laws can then be chosen in the light of the scale and type of
the problem to be solved. He suggests the following dassification of the range

of problems in hydrology (Table 1):

Table 1. Spatial Scales in Hydrology

Class System Typical Length
(metres)
macro large catchment 105
small catchment 104
meso sub-catchment 103
module 102
micro representative elementary volume 10-2

The second aspect of scale is defined by Miller (1980). The analysis of general
problems in applied physics should begin with their expression in the smallest
possible number of reduced variables. Any solution for a problem that has



been worked out in reduced formulation holds true for an infinite variety of
actual systems which, although they differ physically, are simply scale models
of each other. Such systems are said to be similar.

Applying this consideration to hydrology, O'Loughlin (1994) observes that
rigorously defined criteria for similarity of behaviour between catchments have
never been defined. Given the infinite variety of topographic, climatic, soil and
vegetational characteristics of catchments, when should we account for the role
of topography in redistributing water in the landscape? When can we say that
catchments will exhibit similar behaviour?

1.2 Possible approaches

Dooge (1986) observes that while it has been possible to adapt equations from
fluid mechanics to solve problems in hydraulics, in moving from the hydraulic
scale to hydrologic scale the same approach may be possible but has not yet
been achieved. If results are to be obtained at the catchment scale that
contribute toward developing hydrologic laws, then the scientific method must
be followed. He makes the following suggestions for doing this (Dooge 1986,
1989): ’

(a) The first step must be the generation of plausible hypotheses that can be
tested. One group of such hypotheses can be developed by attempting to
combine the nonlinear equations describing hydrologic processes at a
continuum point with simple assumptions concerning the microscale
parameters. It may be possible to simplify the models of the microscale
processes without greatly reducing the predictive power of the resulting
mesoscale model.

(b) Another group of hypotheses for catchment scale can be generated by
working down from the macroscale by disaggregation of global scale
relationships relating to soils, vegetation, drainage networks, rainfall patterns,
etc. In this case also, a start should be made with simple hypotheses and then
testing them. |

(c) When constructing a meso-scale model of catchment response, the
individual modules should be as simple as possible, to make the parameters
determined during calibration at the meso-scale more reliable. After solving



the problem in the simplest possible form we may then proceed to the more
complex problem.

This paper examines various approaches to the question raised by Dooge (1986)
and O'Loughlin (1994): What laws define the similarity between the
behaviours of different hydrologic systems, such as catchments? If such laws
are discovered, we can use data relating to particular behaviour {(e.g. flood
frequency) in one catchment and apply it to predict the behaviour of another
catchment of different size. Dooge's (1989) recognition of a range of different
scales, possibly involving different laws, will be kept in mind.

An earlier review of scale issues in hydrological modelling has been prepared
by Bloschl and Sivapalan (1995). It considers a range of scale issues and has a
special focus on modelling. It includes a comprehensive bibliography. The
present review differs from theirs in that it adopts a different perspective; it is
specifically concerned with the scaling of hydrologic phenomena in real
catchments and examines these in order of increasing complexity. It is not
particularly concerned with modelling. It looks at what has been achieved so
far and what work lays the foundation for future scaling of hydrologic
phenomena. Some of the work examined is not directly on scaling but is
included because it has, or may have, implications for further work on scaling

in hydrology.

2. SCALING PROCEDURES

If the behaviour of a physical system can be described by a set of interrelated
dimensional quantities, then these can be transformed into a set of non-
dimensional quantities that conserve the original relationships for the system.
If two systems (e. g. catchments) are similar, then the corresponding non-
dimensional quantities for each of the systems must be equal. Tillotson and
Nielsen (1984) distinguish between two different approaches used to obtain the
nondimensional quantities: dimensional analysis and inspectional (or

similitude) analysis.
2.1 Dimensional and inspectional analysis

In dimensional analysis, the number of nondimensional terms needed to
completely define the physical system is obtained from the Buckingham Pi
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Theorem (Buckingham 1914). If n dimensional quantities define a system, then
g=Mn-m) nondimensional terms are also sufficient to define the system, where
m is the rank of a (p x n) matrix formed using p fundamental quantities. In
general, the rank of the matrix equals the number of fundamental quantities.

Several procedures are available for obtaining nondimensional terms. For
example, all quantities on which the system depends, and their dimensions, are
first listed. A subset of m quantities (called the repeating variables) are chosen,
from which all the others can be derived. These must collectively contain all
the fundamental quantities and must not combine to form a dimensionless
group. The remaining quantities are then cast in nondimensional form by
multiplying by the appropriate combination of the repeating variables.

Inspectional (or similitude) analysis, unlike dimensional analysis, requires that -
the physical laws governing the system be known. The physical laws and the
initial or boundary conditions are normalized, 1. e. reduced to nondimensional
form, while eliminating as many physical constants and variables as possible.
The nondimensional terms are obtained by inspection from the nondimensional

equations governing the system.

Kline (1986) specifies two steps for the normalization: (a) Make all the variables
nondimensional in terms of the appropriate scales of the problem. (b) Divide
through the equation by the coefficient of one term to make the equation

dimensionless term by term.
2.2 Functional normalization

Tillotson and Nielsen (1984) describe an additional (third) method used to
determine scale factors, i. e. the conversion factors which relate characteristics
of one system to corresponding characteristics of another. This method, called
functional normalization, is an empirical method based on least squares
regression analysis. The objective is to coalesce all relationships in the set into a
single reference curve that describes the set as a whole. The normalization
procedure determines one scale factor for each relationship in the set. This
scale factor relates any particular relationship to the reference curve.

However, Tillotson and Nielsen (1984) warn that scale factors defined by

regression parameters are conversion factors which empirically relate
properties in two systems. On the other hand, scale factors obtained through
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experimentally verified dimensional or inspectional analysis are conversion
factors that have definite physical meaning for the system being studied.

Both dimensional analysis and similitude analysis are relevant to scaling in
hydrology. Although, in general, we will not have equations that define all of
the physical laws, theoretical considerations will often enable us to group
appropriate quantities in nondimensional form. In this case, the approach may
be closer to similitude analysis than dimensional analysis.

3. SCALING OF SOIL-WATER PHENOMENA

A number of studies of soil-water phenomena have been carried out at field
scale. The areas involved ranged from around 10 ha to 150 ha.

Miller (1980) describes a method (developed by Miller and Miller (1956)) for
scaling soil-water phenomena using similitude analysis. He points out that one
cannot get very far in this problem just using dimensional analysis. Most of the
reduced variables which are developed from similitude analysis contain
various combinations of a microscopic characteristic length, 4, representing
particle size and a macroscopic characteristic length, L, representing soil profile
depth. Both being lengths, A and L are indistinguishable in dimensional
analysis but are easily separated in similitude analysis.

He derived the following dimensionless quantities:

pressure: p" = (Vo (1)

hydraulic conductivity: K~ = (742K _ (2)

velocity: v = (n/o)(L/ A (3)

time: t* = (om}A/LD (4)
where o = surface tension;

n = viscosity.

1t is assumed that the different media being scaled are statistically similar and
that in terms of the scaled pressure, p, all similar media exhibit identical static
moisture characteristics, 9(p*), where @is the volumetric water content (water

volume/soil volume).



3.1 Scaling of matric head and hydraulic conductivity

Using the above dimensionless quantities, Warrick (1990) points out that for a
given water content the matric heads, h, and the unsaturated hydraulic
conductivities, K, for similar systems (differing only in their microscopic
characteristic length, A) are related as follows:

Ahy = Ahy = Aavhay 5)
Kl/ﬂv‘l2 = KZ/)N?.2 = Kav/ﬂavz {6)

These two equations were used to reduce large volumes of data into average
relationships using scaling factors to characterise individual sites (Warrick et al.
1977). The data were thus coalesced into meaningful averages while preserving
variability through a set of site-specific factors. Because the soils did not have
identical values of porosity, the above equations were assumed to apply for
equal degree of saturation (water content/saturated water content) rather than
equal volumetric water content. Some of the results are summarised as follows
by Dooge (1982):

Warrick et al. (1977) 'found that, by the use of scaling, the sum of the squares of
the deviations of predicted soil suction for the 20 field locations (within 150 ha)
could be reduced to 15% of its original value and that the scatter in the
predicted unsaturated hydraulic conductivity could be reduced to 14% of its
original value (Figure 1). The values of the scaling factors were determined by
an iterative optimisation technique. The analysis was also applied to 36 sites
randomly selected within an area of 87 ha measured by Coelho (1974) and 8
sites, all within 7.2 km, by Keisling et al. (1977).'

3.2 Scaling of infiltration

Sharma et al. (1980) carried out infiltration tests at 26 sites (comprising 618
observations) in a 9.6 ha watershed. The data for each test were expressed in
the form of Philip's two-parameter equation (Philip 1957):

I=5t1/2 + At ' (7)

where I = cumulative infiltration, ¢ = time, and $ and A are the two parameters.
Using Miller's (1980) concepts, they argue that the sorptivity, S, and the
parameter, A, can be scaled in the following manner:
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Figure 1. Two examples of soil water characteristic data: above unscaled,
below scaled. (Source: Warrick et al. 1977)



Si/Al/2 = 5, fA 12 (8)
and AifAZ = AJAA 9)

where i and r refer to the ith sample and a reference soil respectively. For
convenience, dimensionless scaling factors, ¢, can be defined as:

o = Aifd | (10)
Sharma et al. (1980) also define the following dimensionless parameters:

B = AlS (11)
and T = A?4/52 (12)

and write the transformed Philip equation as:
p=172+ 1 (13)

When all the data points were plotted on B and taxes, a remarkably good fit to
this equation was obtained (Figure 2).

The measured infiltration, I(t), can be scaled using «, based on either S or A,
according to the relationship:

I' = al and = o3t (14), (15)

where I" and t are the scaled cumulative infiltration and scaled time

respectively.

Sharma et al. (1980) plotted scaled infiltration against scaled time, using two
diffe_rent least squares estimates of the scaling factor, ¢, one based on § and the
other on A (Figure 3). The scatter of the data points was greatly reduced by
scaling. However, the two estimates of & turned out to be significantly
different. '

Tillotson and Nielsen (1984) point out: 'A direct consequence of the idea that
scale factors obtained through functional normalization are not necessarily
related to dimensional scaling theories is the fact that a one-to-one
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Figure 2. Field measured infiltration versus time: left unscaled, right in
dimensionless form. (Source: Sharma et al. 1980)
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Figure 3. Infiltration data, scaled by a(S) left and a(A) right. Solid lines are
computed from average S and A. Broken lines are least squares fits. (Source:
Sharma et al. 1980)



correspondence among scale factors determined from various soil properties is
not required. In fact the relationship between scale factors obtained through
functional normalization for two different soil properties is most likely a
mathematical artifact generated by the least squares methods used to obtain
them.' The results of Sharma et al. (1980) 'clearly demonstrate that scale factors
determined from regression parameters are empirical in nature and should not
be assigned physical significance on the basis of scale factors obtained through
dimensional techniques:' Similar results were obtained by Warrick et al. (1977)
for scale factors determined from hydraulic conductivity and soil water

pressure head.
3.3 Concept of similar state

Sposito and Jury (1990) challenge Miller's (1980) postulate that porous media in
similar states should have the same volumetric water content. They point out
that experimental tests of this postulate, although limited in number, indicate
that it describes well-sorted sands reasonably well, but applies poorly to soils
containing a broad range of particle sizes.

They argue that the concept of similar state does not require the postulate of
invariance of the volumetric water content under scaling of the matric
potential. A valid alternative is to postulate the invariance of the pore-size
distribution. This involves a different physical interpretation of the scale factor,
A. If the water content is invariant, A reflects the geometric arrangement of both
the pore space and the solid particles. On the other hand, if the pore space
distribution is the invariant quantity, then 4 is associated only with the pore
space, and the solid particle arrangement may have a different scale factor.
(The pore-size distribution is measured by determining the relative water
saturation as a function of the matric potential.)

The methodologies used in the above examples of scaling of field-scale
phenomena may well have relevance also to the larger sub-catchment scale.
This would be in accord with Dooge's (1986) suggestion that it may be possible
to simplify the models of the various microscale processes and the variation of
the microscale parameters without greatly reducing the predictive power of the
resulting mesoscale model.

10



4. SIMILARITY OF CATCHMENT RESPONSES AFTER DISTURBANCE

Suppose a catchment has experienced a disturbance (e. g. reafforestation or
clearing). The timescale of response to that event is an important problem in
scaling. O'Loughlin (1994) argues that the response time, T, for soil moisture
content at any location in the hillslope following disturbance will be a function
of the following paraméters:

T = f(L/KS, b, smd/Aqg) (16)

where L = slope length;
K = hydraulic conductivity;
S = slope;
b = vegetation growth rate (% per day);
smd = soil moisture deficit {mm);
Ag = change in evapotranspiration (mm/day).

T and the parameters could be made dimensionless by dividing by some
characteristic time for the catchment.

O'Loughlin comments that in any specific case, the form of the relationship will
be impossibly complex. It is important then (in any particular problem) to
ascertain which of the processes/parameters is the most important and which

(if any) can be neglected.

A simple preliminary analysis of the topography throws light on this question.
He argues that similarity criteria can find use in delineating land units which
will exhibit generally similar behaviour and in segregating parts of landscapes
that must be analysed separately because they will exhibit grossly dissimilar
behaviour when disturbed. This represents a possible approach to various
other scaling problems as well.

11



5. SCALING OF SURFACE SATURATION ZONES

5.1 Steady state conditions

Storm runoff in catchments depends on soil properties and topography.
O'Loughlin (1981, 1986) derived criteria for the existence of saturated areas on
hillslopes in catchments and developed dimensionless parameters defining
similarity of saturation regions betweeen catchments. He points out that an
individual catchment responds to a storm event in a way that is closely related
to the prevailing wetness state of the landscape. Local saturation occurs
whenever the drainage flux from upslope exceeds the capacity of a soil profile
to conduct that flux. He developed the following criterion for local surface
saturation in a hillslope under steady state conditions, in dimensionless form
(O'Loughlin 1986): '

we i { L[ Lan» 22 (17)
MBL\T ) @ QoL
where M = surface gradient;

b = length of element of contour;

A = partial catchment area;

g = draina'tge flux;

T = soil transmissivity;

T = mean catchment transmissivity;

A; = total catchment area generating the outflow;
Qo = outflow;

7 = Qo/Ay

L = reference length (e. g. mean hillslope length);
w = a wetness function at a point in the catchment.

Using storm records for one catchment, O'Loughlin (1986) plotted runoff ratio
(quickflow/ total runoff) against 1/Qq (taking Qo as baseflow preceding each
storm). He superimposed on this diagram the curve showing the percentage
area of saturated zone against w, derived from a topographic analysis (Figure
4). A value of T was chosen to make the curve form a lower envelope to the
data. However, this value is 5 times larger than in situ measurements would
indicate and O'Loughlin suggests that these measurements may not adequately

12
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Figure 4. Comparison of saturated area predicted from topographic analysis
with actual runoff percentages from recorded storms. (Source: O'Loughlin
1986)

describe the phenomenon. He also argues that the scatter of points above the
curve demonstrates that some runoff must be produced by mechanisms other
than surface flows from areas that were saturated before each storm.

For uniform T and g, the above criterion for local surface saturation (17) can be

written as:
A /M2T/g (18)

where A, = partial catchment area per unit contour width. The ratio, A;/M, is
known as a topographic index or a wetness index.

5.2 A quasi-dynamic weiness index
Barling et al. (1994) investigated the distribution of zones of surface saturation
under non-steady-state conditions, i. e. before steady state has been reached.

They argue that generally the velocity of subsurface flow is so small that most
points on a catchment receive contributions from only a small portion of their

13



total upslope contributing area and the subsurface flow regime is in a state of

dynamic non-equilibrium.

They developed an alternative, quasi-dynamic wetness index, A,/M, where A, =
the area of catchment per unit width contributing runoff to the discharge point
at a given time. Prior to saturation, A, < A,. They also compared this index
with a third one, developed by Beven and Kirby (1979) and used by Sivapalan
et al. (1987), In(A/M), which corresponds to an exponential relation between
subsurface flow and soil moisture storage or to a hydraulic conductivity
decreasing exponentially with depth.

Using a computer model, which calculates soil water redistribution and runoff
on a continuous basis (Grayson et al. 1992), Barling et al. (1994) simulated a
number of rainfall scenarios for a particular catchment. The depth of the
perched water table divided by the soil profile depth was taken as a measure of
the soil water content. In each simulation, this 'depth ratio' was plotted against
each of the three wetness indices. For the case of a continuous rainfall event
they found a strong correlation between the index A./M and the depth ratio
(Figure 5), but no significant correlations between the depth ratio and the A;/M
or the In{A;/M) indices.

Barling et al. (1994) indicate that their theory does not apply to situations where
soil piping plays an important role in the hydrologic response of the catchment.
In such cases the wetness indices are not good predictors (Jones 1987). Ward
and Robinson (1990) describe runoff mechanisms (other than pipe flow) in
which each input of rainfall could be accompanied by a virtually instantaneous
outflow of subsurface water at the slope foot. This requires the available
moisture storage capacity within the system to be already filled. The
methodology of Barling et al. (1994) could also be applied to such wet
antecedent conditions.

It would be interestihg to convert the quasi-dynamic wetness index, A./M, to
non-dimensional form and apply it to empirical data from different catchments,
to determine its potential for scaling zones of surface saturation. It would be
necessary to find a way to obtain values of ime in a consistent manner, as in
reality series of blocks of rainfall superimpose their effects.

14
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6. RUNOFF GENERATING PROCESSES AND FLOOD FREQUENCY

In recent years a number of papers have explored scaling in runoff generation
processes and in flood frequency distributions.

Wood and Hebson (1986) developed similarity relationships for flood
frequency distributions that are independent of basin scale. They used the
geomorphic unit hydrograph model of Rodriguez-Iturbe and Valdes (1979),
assuming a triangular instantaneous unit hydrograph. Their derived
dimensionless flood frequency distribution is a function of three dimensionless
parameters:

a geoclimatic rainfall scaling factor that defines the areal rainfall
distribution;

15



Horton's length ratio (Horton 1945); and
the ratio of average storm duration to characteristic basin response time.

Sivapalan et al. (1987) developed a scaled model of storm runoff generation due
to spatially variable rainfalls on heterogeneous catchments, taking account of
the effects of catchment topography on the within-storm dynamics of runoff
contributing areas. Their model is based on the earlier work of Beven and
Kirby (1979) and Beven (1986).

6.1 A dimensionless flood frequency model

Sivapalan et al. (1990) then developed a dimensionless flood frequency model
using a generalised geomorphic unit hydrograph and partial area runoff
generation. This utilises the work of Wood and Hebson (1986) and Sivapalan et
al. {1987). They define a number of dimensionless similarity parameters. Some
of the main ones used in this paper are:

* DT . . .

= —=T (scaled rainfall intensity) (19)
P Wc(es - er) ty
K'= _KoT (scaled hydraulic conductivity) (20)

Wc(gs - er)
Q" = —M%-@ (scaled initial soil wetness) 1)
5= t/h . (scaled storm duration) (22)
At = AJl2 (scaled catchment area) (23)
where p = areal average rainfall intensity;

7, = mean duration of storms;

7, = characteristic basin lag time;

6, = saturation moisture content;

6, = residual moisture content;

v = depth of capillary fringe;

Ko = average hydraulic conductivity at surface;
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(2(0) = catchment base flow;
Qo = a base flow parameter;

1
A= Ijm(a/umﬁ)m,-

A = area;

(a/tan B} = atopographic wetness index;

i = alocation parameter in a gamma distribution of In(z/tan B);
L = rainfall field correlation length.

The authors plotted p"/K”, t*, Q°, average contributing area, and (saturation
excess runoff/total runoff) against return period for various sets of
stochastically derived rainfall and soils data. They found that for a catchment
dominated by infiltration excess runoff, the flood frequency curve is
determined by the ratio of rainfall to soil hydraulic conductivity (p"/K") and the
scaled catchment area (A”), while initial catchment wetness (Q*), storm
duration (t*) and average contributing area are fairly constant across return

periods (Figure 6). The ratio, saturation excess runoff /total runoff, declines

with return period.

For a catchment where saturation excess storm production dominates at low
flood return periods and infiltration excess dominates at high return periods, t",
Q", average contributing area and p*/K* vary with the return period.

6.2 Testing some parameters

In a further development of this work, Larsen et al. (1994) define another two

parameters:
f = wdfir (24)
Stfd
R= J Qe (25)
ijdz

where the coefficient f is defined by

K(z) = Kpexp(-fz), thehydraulic conductivity at depth z;
Qser = runoff generated by saturation excess;
Qo = total runoff.

Note that f* is not dimensionless (because A is not dimensionless).
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Figure 6. Values of selected parameters of runoff generation model plotted
against discharge return period. (Source: Sivapalan et al. 1990)
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Using empirical data from a number of catchments, the authors plotted a graph
of f* against K" together with computer generated contours of R (Figure 7).
The actual R values for the catchments come reasonably close to the contours.
They argue that this confirms that the two parameters K™ and f* can account for
most, if not all, of the variability of runoff responses between catchments and
therefore that two catchments in the region are similar, in terms of their runoff
generation responses, if these two parameters are identical.

L]
KN (0.08)

* NS {6.09)

Figure 7. Contours of constant R values as a function of K” and f’, together -
with points (and correspondmg R values) for actual catchments. (Source:
Larsen et al. 1994)

6.3 Discussion of the model

To what extent does the work reviewed in this section throw light on the
problem of scale? The plots of the various dimensionless parameters by
Sivapalan et al. (1990) provide insight into the processes involved in the flood
frequency distribution (including the significance of different runoff
mechanisms). However, some plots of empirical data will be needed before we
can confirm the usefulness of these parameters for scaling.

Moreover, it would be worth investigating if some other (perhaps simpler)

parameters for rainfall intensity, hydraulic conductivity, initial soil wetness,
etc., might be just as useful. For example, does the expression for scaled initial
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soil wetness, Q*, really have to be so complicated? And does the variability
and uncertainty of the soil properties warrant the use of such terms as 6;, 6, A

and u?

Can the methodology and the dimensionless parameters used in this modelling
investigation be applied to empirical data? To find an answer, it would be
useful to plot flood frequency data from a number of catchments using the
above parameters and perhaps also some alternative parameters corresponding

to a simpler physical model.

In the plot of f against K" by Larsen et al. (1994} for various catchments, only
seven points are plotted. The parameter f* is not dimensionless. It would be
interesting first to convert it to a dimensionless parameter and then plot the
results for a larger number of catchments. However, the parameters, K *and f ,
are both measures of the soil hydraulic conductivity (its surface value and rate
of decline with depth). The physical significance of the R contour plots on
these two axes is not clear.

A number of questions may also be asked about the constant f (the exponential
rate of decrease of hydraulic conductivity with depth) used in the parameter f .
Given the great variability of soil hydraulic conductivity, how can we choose a
value of f for a whole catchment? Sivapalan et al. (1990) suggest that f can be
estimated for the catchment by analysis of the baseflow recession curve just
prior to the storm. Yet how appropriate is the exponentially decreasing model
of hydraulic conductivity in a real catchment and how meaningful is a
catchment value of f?

Sivapalan et al. (1987) argue that Beven (1982) has provided evidence to show
that exponential decrease in conductivity is a reasonable assumption for a wide
range of soils. In fact Beven (1982) obtained good correlations when fitting
exponential curves to soil conductivities obtained at some sites. (He also
obtained good correlations using a power curve.) However, this does not
indicate a physical law. There are obviously many soil profiles where an
exponential fit would not be successful, e. g. in duplex soils. Furthermore, in
real catchments, soil profiles vary from one location to another; there are also
tunnels and pipeflow phenomena (Ward & Robinson 1990). Might not a
simpler model of hydraulic conductivity be just as useful? For example, could
the variation of hydraulic conductivity with depth be covered just as well by a
single parameter for transmissivity?
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7. GEOMORPHOLOGIC STRUCTURE OF HYDROLOGIC RESPONSE
7.1 Instantaneous unit hydrograph

Rodriguez-Tturbe and Valdes (1979) attempted to link the instantaneous unit
hydrograph (IUH) with the geomorphic properties of a basin. This attempt has
been taken further by Gupta et al. (1980; 1983). To what extent is this relevant
to the problem of scale, in our sense of defining similarity between the
hydrologic behaviour of different catchments?

Using a lengthy analysis involving Markov processes, Rodriguez-Iturbe and
Valdes (1979) expressed the IUH as a function of Horton's numbers, R4, Rg and
R; (Horton 1945), a streamflow velocity, v, and a scale parameter, L. They
developed equations for the flood peak, g,, and the time to peak, t,, which in
turn depend on these five parameters. They found that the dimensionless
product, gp.t,, is independent of v and L. Itis a characteristic constant for each
basin, independent of the storm characteristics and intimately linked to the
geomorphology of the watershed and to its hydrologic response structure.

Using a simpler statistical procedure, not involving Markov processes, Gupta et
al. (1980) also developed a representation of the IUH from basin
geomorphology. A comparison of the theoretical results with observed flows
showed good agreement for two of their three case studies.

7.2 An analytical channel model

Gupta and Waymire (1983) argue that the previous two approaches are
inadequate and distort the nature of the hydrologic response. In particular, the
formulation of the network geometry in terms of the Strahler ordered channels
(Strahler 1964) was inappropriate. Instead, Gupta and Waymire attempted the
formulation of an analytic approach to hydrological response that involves an
analytical channel model, building on the work of Shreve (1966). They describe
their model as theoretical in the sense that it aims at deducing observed

empirical laws within a mathematical framework.

They formally define the hydrologic response of a channel network as the time
history of the arrival of particles at the outlet for an initial uniform distribution
of particles injected simultaneously at each source and each junction of the tree
and then allowed to travel with the same constant velocity along the links to
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the outlet. They define channel networks as similar with respect to their
response functions if they have the same response functions after these have
been transformed to a common time scale. In that case they will also be similar
with respect to peak flow, time to peak, and mean lag time (when the last two
are transformed to a common time scale).

_As an example, they considered the problem of hydrologic similarity with
respect to mean lag time amongst all networks having a fixed magnitude, M
(i. e. having M sources). They derived a mathematical expression for the mean
lag time for each network, which turned out to be in reasonable agreement with
an empirically-based formula. However, in general they conclude that
although they have introduced the key variables of a channel network that
determine its response function, no mathematical framework has been
identified to derive the structure of the interrelationships of the variables.

To what extent is the work reviewed in this section relevant to our task of
scaling, in the sense of defining similarity between the behaviour of different
catchments? The work of Rodriguez-Tturbe and Valdes (1979) and Gupta et al.
(1980) provides much insight into the geomorphic basis for hydrologic
responses as expressed in the ITUH. The work of Gupta and Waymire (1983)
defines and examines the similarity of basin response functions, but the lack of
an adequate mathematical framework means that it cannot be used as a basis
for scaling between catchments at this stage. However, the concepts behind the
model are important for future work and have led to the developments

considered in the next section.

8. SIMPLE SCALING AND MULTISCALING IN RIVER NETWORKS

The past ten years have seen the development of the mathematical theory of
simple scaling and multiscaling, which is now being applied to some
hydrologic phenomena. This section will examine this development.

Gupta et al. (1986} point out that a basin is made up of two interrelated
systems: the hillslopes and the channel network. They argue that to explore the
linkage between the two systems the vertical dimension must be taken into
account. However, this third dimension has been largely ignored in previous
theory. In particular, the drops in elevation among the channel links of the
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network should be connected through some unifying principles. (A link is a
portion of the channel between two nodes.)

8.1 Scaling invariance

Gupta and Waymire (1989) introduce the concepts of scaling invariance (also
called simple scaling) and statistical self similarity and apply them to the
distribution functions of link heights in river networks. The link height is the
elevation difference between the two nodes of a link.

Let the link magnitude, m, be a scale parameter, p(m) a 'scaling function’, and Z;
a set of random variables not dependent on m. The distribution functions of the
link heights, H;(m), are defined as having scaling invariance if

Hilm) _ 5. i=12, .. (26)
im)

If A is a scalar, the link heights, Hi(Am), are defined as self similar if the
distribution function of the ratio

HiAm) _ H,(m) i=1,2,.. (27)

p(4) '

is independent of A for all A > 0. (In the above two equations, '=" means having

the same distribution.)

Gupta and Waymire (1989) also define a link concentration function (LCF) as a
stochastic process parameterised by elevation, . It represents the number of
links at various elevations, h, above the outlet. They plotted the normalised
LCFs (the proportion of links versus the elevation) for four basins together with
(in each case) theoretical curves based on four different sets of scaling
assumptions (Figure 8). They found that the theoretical curve based on their
self similar model fitted the empirical data better than the curves based on
other assumptions. However, the fits are not particularly close.
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Figure 8. Example of normalized empirical and conditional mean LCFs for 4
different scaling models of link heights for a basin. (Source: Gupta & Waymire
1989)

8.2 Multiscaling of flood peaks

Gupta and Waymire (1990) define another term: multiscaling. Suppose we
wish to examine the average rainfall over a pixel of side length 4. Let mu(4)
denote the statistical moment of order , and consider a plot of

log(my(A)) = ap + 64 log(4) (28)

where the intercept ap and the slope & are estimated by regression. The
stochastic process is defined as multiscaling if the above plot is linear for each h
while the plot of 6, against k is non-linear. The authors found that multiscaling
occurred in empirical data plots they examined for spatial rainfall, spatial river
flows and turbulent velodities.

Smith (1992), Gupta and Dawdy (1995) and Gupta et al. (1994) applied- simple
scaling and multiscaling theory to the statistical distribution of annual flood
peaks, parameterised by drainage area. The analysis of data from a number of
catchments by Gupta and Dawdy (1995) suggests that floods generated mainly
by snowmelt runoff exhibit simple scaling while rainfall-generated floods
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exhibit multiscaling. They argue that the multiscaling property of rainfall-
generated floods is a consequence of the multiscaling property of rainfall,
demonstrated, for exarnple, by Gupta and Waymire (1993).

As an example of the multiscaling of flood peaks, Gupta et al. (1994) plotted the
first four statistical moments for a large set of catchment data, together with the
lines predicted by multiscaling theory using a lognormal model (Figure 9). A
good fit was obtained.
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Figure 9. Multiscaling predictions of flood peak moments using a lognormal
model. (Source: Gupta et al. 1994)

The presence of multiscaling appears to be much weaker in small basins than in
large basins (Gupta et al. 1994). Furthermore, there appears to be 2 critical
basin area, A, (probably between 50 and 260 km?) which defines two different
ranges of a scale parameter, 4. Let A be the drainage area and Amax and Amin
two extreme values, outside all the drainage areas in the region. For basins
with A > A, A = A/Amax > 1, and for those with A < A, A = A/Amin > 1.

Gupta and Dawdy (1995) suggest that there is a physical basis for the difference
in the scaling structure of floods between small and large basins. Hillslope
processes and channel network geometry dominate in the response of small
basins, while in large basins the response is input dominated, i.e. the spatial
variability of precipitation becomes important.
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Multiscaling theory is still in process of development. Gupta and Dawdy
(1995) note that there are many questions still to be answered for the
development of a general theory of flood frequency. The indications are that
multiscaling will be very important in the scaling of flood peaks and probably

other hydrologic phenomena.

9. CLIMATE, SOIL AND VEGETATION

Eagleson (1978) examined the interrelationship between climate, soil and
vegetation. He developed a stochastic-dynamic formulation of the vertical
water budget at a land-atmosphere interface.

The average annual water balance for soil moisture is given by:
E[Ia] = E[Eta] + E{Rga] (29)

where I, = annual total infiltration;
E, = annual total evapotranspiration from soil moisture;
Rg, = annual groundwater runoff;
E[ ] = expected value.

Eagleson (1978) assumed representative probability density functions for the
interval between storms, duration of storms, rainfall intensity and potential
evapotranspiration. He thus obtained detailed expressions (including
dimensionless parameters) for each term in the above equation:

E[L] is a function of average annual precipitation, a gravitational
infiltration parameter and a capillary infiltration parameter;

E[E.J) is a function of average annual potential soil moisture
evapotranspiration, an exfiltration parameter, vegetal canopy density
and potential transpiration efficiency;

E[Rga) is a function of mean length of rainy season, saturated hydraulic

conductivity, average soil moisture concentration in surface boundary
layer and rate of capillary rise.
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Eagleson then reduced the annual water balance equation to dimensionless
form, involving nine dimensionless parameters which define the conditions for
annual water balance similarity.

9.1 Long-term equilibrium

In a further development, Eagleson (1982) suggested the existence of
equilibrium relationships between long-term evapotranspiration and the state
of the vegetation canopy. Dooge (1989) sums up this work as follows:
'Eagleson (1982) suggested that under conditions of water limitation, a system
of vegetation would, for the given climate and soil moisture conditions,
produce the particular canopy density which reduced moisture stress at the
roots to a minimum. For the case where vegetative activities are limited by
energy rather than by water, Eagleson suggested that the vegetative system
would tend to maximize the biomass for the given amount of energy. By
applying these two hypotheses to his 1978 stochastic-dynamic model, Eagleson
(1982) derived the equilibrium relationship defining the limiting curves
relating the ratio of actual to potential evapotranspiration (which is species
dependent) to the density of the vegetative canopy. Preliminary comparison of
data for a few catchments in humid and semi-arid regions tends to confirm the
derived limiting relationships as reasonable (Eagleson & Tellers 1982)."

Some aspects of Eagleson's methodology, including the development of the
dimensionless parameters, may be useful in the scaling of hydrological
phenomena. Of particular importance is his treatment of vegetation, in its

interaction with climate and soil.

10. FRACTALS AND SCALING

When certain objects and systems are examined at smaller and smaller scale,
the same pattern repeats itself. Such objects and systems are called ‘fractals’.

They possess the property of ‘self-similarity’.

When each piece of a shape is geometrically similar to the whole, it is self-
" similar, in the strict sense (Mandelbrot 1983). However, in fractals where the
small copies look like the whole but have variations we have 'statistical self-
similarity’ {already considered from another perspective in section 8). There
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are also objects that exhibit ‘self-affinity’, in which there is a difference between
the scaling behaviour in two different directions (Peitgen 1992).

Self-similar objects do not have a uniquely defined length. Rather, the
measured length is a function of the length of the measuring device. A
coastline is a good example. The measured length increases indefinitely as the
measuring rod gets smaller. For any fractal trace, the general length relation is
given by (Tyler & Wheatcraft 1990):

L = HelD (30)

where L is the length, H is a constant, ¢ is the measuring unit, and D is called

the 'fractal dimension'.

Fractals have been applied to the analysis of hydrologic systems. Chang et al.
(1994) applied fractal theory to describe the fingering structure of water in a soil
profile. They carried out several experiments on the infiltration and movement
of water in clays and sands. The study demonstrated that the effective surface
tension of fingering may be estimated from the fractal dimension, D, the
constant, H, and the mean pore size.

10.1 Fractal nature of river networks

Tarboton et al. (1988), Rosso et al. (1991) and Nikora (1994) have examined the
fractal nature of river networks. Tarboton et al. (1988) argue that the fractal
dimension of the total length of a river network is:

= log R/ log Ry (31)

where Rg and Ry, are Horton's bifurcation and length ratios (Horton 1945).
Examining 9 river basins in the USA, they found that D has a value close to 2.

Rosso et al. (1991) argue that the fractal dimension of the mainstream length of

ariveris:

D = max (1, 2log Ry / log Ra) (32)
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where R4 and R are Horton's area and length ratios. They examined 5 river
basins in Italy and 8 in Missouri, USA, and compared measured values of D
with values obtained from this equation. Reasonable agreement was obtained.

Nikora (1994) examined the self-similarity and self-affinity of drainage basins.
After analysing 25 river basins in various countries, he concluded that river
basins are generally self-affine. However, he does not rule out the possibility
that the drainage basins exhibit self-similar behaviour over a certain range of
scales. .

In the above papers, fractal theory was used to describe physical systems. It is
a big step to go from there to the use of fractals in the scaling of hydrologic
processes. It is possible that future developments may lead to such
applications. Furthermore, some aspects of fractal theory are closely related to
simple scaling and multiscaling theory, considered in section 8.

11. THE REPRESENTATIVE ELEMENTARY AREA CONCEPT

Wood et al. (1988) pose the question: How does the statistical behaviour of
runoff generation change with increases in catchment scale? They hypothesise
that at small scales the patterns of topography, soil, and rainfall characteristics
are important in governing runoff production. However, as scale increases,
more and more of the variability in the distributions is sampled within each
area, until eventually at some large scale, all areas will yield almost identical
responses for the case of stationary distributions. They suggest that this
threshold scale represents a 'representative elementary area' (REA) which will
be a fundamental building block for catchment modelling.

Wood et al. (1988) used simulations, based on the topography of the Coweeta
River basin in North Carolina (area = 17 km?2), to examine this hypothesis. For
each of 5 realizations of rainfall and 3 correlation lengths, they determined the
runoff volume for 148 sub-catchments. (Correlation length is a measure of the
distance beyond which there is no correlation of the rainfall.) These runoff
volumes were ranked on the basis of catchment size, and then mean runoff
volume was plotted against mean sub-catchment area. The plots were used to
determine the REA, taken as the area where the curve flattened out.
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The study concluded that an REA does exist in the context of the runoff
generation response of catchments. (Its area was found to be about 1.0 km?2.)
The REA was strongly influenced by topography, while the variabilities of soils
and rainfall inputs between sub-catchments appeared to have only a secondary

role.

Wood et al. (1990) report on similar simulations carried out in another
catchment. The ratio of runoff to precipitation depth was examined and the
same REA of 1.0 km? was found.

Bloschl et al. (1995) showed that the existence of an REA requires a 'separation
of scales' or 'spectral gap' in catchment variability (of topography, soil,
vegetation and rainfall fields). They carried out another simulation, also using
a distributed parameter model, on the same catchment as Wood et al. (1988).
They used sets of nested sub-catchments and considered the effects of flood

routing.

They found that the size of the REA, when it exists, will be specific to a
particular catchment and a particular application. It is strongly controlled by

the correlation length of precipitation and also depends on many other factors,
including storm duration and variability, flow routing and infiltration
characteristics. They consider that there is no evidence for one universal size of
an REA or one universal 'optimal element size' in the context of distributed
rainfall-runoff modelling. Furthermore, it may be that an REA will generally

not exist.

Fan and Bras (1995) argue that since an REA requires a clear separation of
scales in the source variability, it is unlikely to exist in a natural environment,
for a general separation of scales is not warranted in nature where rainfall, as
well as topography and soil, are known to vary at many nested scales. Even in
situations where an REA does exist, they argue that it does not provide a
definite and robust measure of spatial variability, because it is a function of a
range of scales and the individual events examined.
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12. CONCLUSIONS

There are two aspects to the problem of scale in hydrology. The first is the
recognition that different laws may dominate at different scales. For example,
hillslope runoff processes may dominate the response at sub-catchment scale;
the channel network geometry becomes more important in meso-scale basins
(up to the order of 100 km?); while in large basins the spatial variability of
precipitation becomes very important.

The second aspect of scale involves the establishment of dimensionless
parameters for a problem, so that a solution can be applied to an infinite variety
of systems. Two different but related procedures are used to obtain sets of
dimensionless parameters: dimensional analysis and similarity analysis. Both
of these are relevant to scaling in hydrology.

Scaling of soil water phenomena has been carried out successfully at field
scale, using dimensionless parameters defined by Miller and Miller (1956). The
results show both the value of working rigorously with physical laws and the
difficulty of obtaining completely consistent results, even with such relatively
simple phenomena. The methodologies provide a partial model for scaling at
larger hydrologic scales.

Considerable work has been done on the scaling of runoff generating processes
and flood frequency, using computer modelling (Wood and Hebson 1986;
Sivapalan et al. 1990) and some plots of catchment data (Larsen et al. 1994).
The computer plots of dimensionless parameters provide insight into the
processes involved in the flood frequency distribution. However, scaling in a
model is a very different process from the scaling of hydrologic phenomena in
real catchments and many plots of empirical data will be needed before the
usefulness of these parameters for scaling can be confirmed. The parameters
involving soil hydraulic conductivity appear to be unnecessarily complex.

Simple scaling and multiscaling theories have been applied to some hydrologic
phenomena. In particular, they have been found appropriate for the scaling of
flood peaks (Gupta et al. 1994). Analysis of catchment data suggests that floods
generated mainly by snowmelt runoff exhibit simple scaling while rainfall-
generated floods exhibit multiscaling. Multiscaling theory is in process of
development and there are many questions still to be answered. It may prove
the key to a practical procedure for the scaling of flood peaks.
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Eagleson (1978, 1982) has examined the interrelationship between climate, soil
and vegetation, and has developed dimensionless parameters defining the
conditions for annual water balance similarity. His methodology, especially for
the treatment of vegetation and for the development of dimensionless

parameters, may prove useful in scaling.

Fractal theory has been applied to the analysis of some hydrologic phenomena,
including river networks. This work does not appear to lead to practical
scaling applications at this stage. However, it may in the future, for example
through its relation to simple scaling and multiscaling theory.

The representative elementary area (REA) concept, developed by Wood et al.
(1988) is not relevant to the task of scaling. Bloschl et al. (1995) have found that
the REA, when it exists, will be specific to a particular catchment and a
particular application. Fan and Bras (1995) also challenge the existence of an

REA in a natural environment.

13. RECOMMENDATIONS

(1) In further research on the scaling of hydrologic phenomena, priorities must
be set as to what problems to investigate. The possibilities include: stream
discharge, water yield, flow-duration curves, flood frequency curves, peak
floods, surface saturation zones, and dynamic response time. A relatively
simple problem should be chosen first.

(2) While there has been reasonable success in scaling soil-water phenomena at
field scale (approximately 1 km2), to go from here to working with catchment
data on a larger scale is a big step. The difficulties include: (a) the large number
of variables and physical laws that govern the phenomena, (b) the spatial
distribution of such properties as soil hydraulic conductivity, (c) the stochastic
nature of such variables as storm intensity, storm duration and soil moisture
condition, and (d) the systematic distribution of catchment attiributes
(topography, soils, etc.). It is therefore essential that in planning further work,
a thorough-going 'systems’ approach be used; i.e. the problem must be clearly
defined, and appropriate methodologies developed and progressively
reassessed after working with data.
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(3) The magnitude of scale for each investigation should be determined, e. g.
large basin, small catchment, sub-catchment. As Dooge (1989) points out,
different laws may dominate at different scales and the appropriate set of laws
then chosen in the light of the scale and type of problem to be solved. It is
desirable to begin with a fairly small scale and, if successful, to then move up to
a somewhat larger scale.

(4) For each problem investigated it is necessary to identify the various
quantities that govern the hydrologic behaviour and to identify the physical
laws operating. The quantities will include the physical attributes of
catchments (soils, topography, vegetation) and the driving climate variables
(precipitation, evaporation). The dimensionless parameters must then be
established, using dimensional analysis or similitude analysis.

(5) In general, the number of variables governing a phenomenon will be too
large for all to be considered and there will be many uncertainties in properties
of soils, topography, etc. So it will be necessary to simplify. The initial model
should be made as simple as possible. After solving the problem in that form,
we may then proceed to the more complex problem.

(6) In considering soil hydraulic conductivity, a simple theoretical model
should be used initially, e. g. using the overall transmissivity of the profile.

(7) In any investigation, the dimensionless parameters derived should be
evaluated by testing them against historical data sets from catchments where
the individual variables (and their dimensionless counterparts) cover a wide

range of values.

(8) Bearing in mind the above principles, an appropriate initial study would be
the scaling of base flow discharge from a sub-catchment. This is a relatively
simple phenomenon, involving a small scale (less than 10 km?). The discharge
is a function of such variables as storm history, catchment area, soil moisture
condition, hydraulic conductivity and vegetation state. | Steps in the
investigation would include: development of a simple theoretical model,
definition of dimensionless parameters, assembly of historical data sets,
plotting of dimensionless parameters for this data, and further refinement of
the model.
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