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SUMMARY

Adaptive linear models have been used in the past for on-line forecasting of floods.
However, there have been few investigations devoted to determining the suitability of
these models for real-time flood warning systems for catchments in Australia. This
report presents two linear models, namely, the Unit Hydrograph (UH) and ARMA-type
models for real-time flood forecasting. As the parameters of the models can vary from
storm to storm and also within a storm, a linear sequential optimal estimation technique
(Kalman filter) is used to update the parameters of these models. A simple loss model
consisting of initial and continuing loss components suitable for real-time operational
purposes is used. The models are used to forecast runoff from rainfall for three
Australian catchments. Linear river routing models are also developed and applied and
a multiple input-single output (MISO) model is used to analyse a river reach with
several tributary inflows. Proper a priori estimates of noise statistics are important for
optimal performance of the filter. A procedure more suitable for short series of data is
proposed and applied successfully. The real-time forecasting performance of these
linear models is compared with that of non-adaptive methods and some of the reasons
for the difference in performance are discussed.



PREFACE

An important component of any flood management strategy is the provision of warning
prior to a flood event. If people are given adequate notice of the timing and peak level
of impending flood inundation, they can take actions which will save lives, livestock
and property. The goal of CRCCH Project D4 "Development of an improved real-time
flood forecasting model” is to increase both the accuracy of the prediction of flood
level, and increase the warning time of the event.

This report describes the work performed by Dr Amirthanathan during the early stages
of the D4 project. He has applied adaptive models (i.e. models which continuously
adjust their parameters based on their past forecasting accuracy) to Australian data, and
has shown their considerable potential for improved forecasts in many locations.

Other models will be examined during the course of this project. The final outcome
will be a knowledge base of model performance from which firm recommendations will
be made. Dr Amirthanathan's work is an important contribution to that knowledge

base.

Russell Mein
Program Leader, Flood Hydrology
Cooperative Research Centre for Catchment Hydrology
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1. INTRODUCTION

A large number of rainfall-runoff models have been developed and are being used for
on-line forecasting purposes with the increasing use of telemetry in the control of water
resources systems. Models commeonly used include linear unit-hydrograph and non-
Iinear network models, as well as conceptual soil moisture accounting models such as
the Stanford Watershed Model. The reliability of streamflow forecasts will govern the
reliability of decisions pertaining to flood warning, flood control and river regulation,
and so influence the associated benefits which accrue from them. The extent to which a
model accurately represents the response of a catchment to rainfall will have a major
influence on the reliability of forecasts.

Two of the main problems of real-time flood forecasting are:

(a) the estimation of antecedent conditions for individual storms and the
determination of the amount and location of rainfall excess (in real-time) for input
to the catchment model;

(b) the need to continuously correct forecasts using the observed errors in earlier
forecasts.

Real-time flood forecasting models should be developed using criteria that are
important in forecasting, and long-term performance of the model should play a lesser
role than short-term performance when-model structures are being specified. As real-
time forecasting is concerned with predicting an event during its occurrence, it should
utilize both the measurements of input/output and the state of the system as they
become available. The forecasting procedure should also objectively evaluate the errors
in forecasts. This requires that the model be amenable to updating, based upon past
performance in predicting the event and upon new measurements as these become
available. The feedback information is most valuable in improving the real-time
forecasting performance of a model, both by adapting the model structure as well as the
parameters, taking into account the uncertainty in the input/output measurements.

1.1 Sources of Error

It is useful to make note of some of the sources of error in the modelling process. In
modelling various components of the rainfall-runoff process, several simplifications
have to be made that introduce an error which is reflected in the predictions. The input
data required for the operation of a rainfall-runoff model include quantitative
precipitation measurements and, in some cases, precipitation forecasts. Errors in
precipitation input include the measurements themselves as well as averaging errors,
while there is a considerable error in forecast rainfall.



There is a further source of error in the model forecasts due to the selected set of model
parameters. Some of these parameters are chosen through calibration of the model,
while others are found from the physical characteristics of the basin. Errors are also
introduced due to imperfect knowledge of the initial state of the hydrologic system,
although since the memory of the system is of finite length, this error could be
minimised in flood forecasting by beginning the operation of the model well ahead of
the start of flood events. In general, water level measurements are the only
measurements used in estimating runoff in a flood forecasting system. This introduces
a further error, since the relationship between water level and runoff (namely, the rating
curve) is often unstable and it is sometimes difficult to establish this relationship,
especially in the range of high flood flow levels.

1.2  Objectives of the Study

The objectives of this study are to:

(a) develop adaptive forecasting procedures that are suitable for real-time operational
PUrposes;

{b) use these procedures to address some of the problems of real-time forecasting
described earlier, including a suitable loss model for real-time operations; and

(c) apply these adaptive procedures using field data from Australian catchments and
to compare their performance with that of other non-adaptive methods.

2. OVERVIEW OF ADAPTIVE FLOW FORECASTING METHODS

Rainfall-runoff models developed so far can be classified into three types, namely,
distributed physically based models, lumped conceptual models, and input-output or
‘black box' models. As the physically based models have not yet been fully developed,
the choice of a rainfall-runoff model for many real-time forecasting applications is
between a lumped conceptual model and a 'black box' model such as the unit
hydrograph model or an ARMA type model. The more complex lumped conceptual
models do not readily lend themselves to having their forecasts updated in a
computationally efficient manner. On the other hand, the black box' models tend to
have minimal computational requirements and, because they can be explicitly specified
in analytical form, recursive estimation methods can be readily applied to update their
forecasts in real-time. Simple adaptive models such as the ARMAX model or transfer
function models have been widely used [2,3]. Kitanidis and Bras [5] developed a
stochastic conceptual model based on the soil moisture accounting and the channel
routing part of the National Weather Service River Forecast System watershed model,



and on a non-linear lumped parameter conceptual hydrological model, and showed its
usefulness for real-time forecasting of river flows. A considerable amount of research
effort has been spent in exploring the use of sophisticated estimation procedures with
relatively little effort devoted to the improvement of the underlying models or the
quality of the input/output data. This has resulted in insignificant improvement in
forecasts using these sophisticated procedures [7,8].

21 Real-Time Forecasting Techniques
In the context of real-time use, an adaptive method is defined as one that utilizes the
current and previous input and output in computing the future output, by using the
deviation or discrepancy between the latest observed and model outputs as feedback. In
the case of non-adaptive methods, the model, once calibrated, is assumed to be fixed
and ignores the forecasting error or deviation.

Generally, adaptive linear models have been used in three different ways in real-time

forecasting: .

(a) the parameters of the model are formulated as the state variable in the filter and
updated using the prediction error as feedback;

(b) the hydrological variables (runoff) are considered as the state variables and are
corrected at each step using the Kalman filter, as this technique optimally
estimates the state variable;

{¢) two Kalman filters are used, one updating the parameters and the other correcting
the hydrological variable. This method is termed the Mutually Interactive State-
Parameter method and was proposed by Todini [3].

Throughout this study, the adaptive method used is as described in (a) above, where the
parameters are sequentially updated and used for prediction of flows. This method is
described in more detail in the following section.

2.2 Adaptive Prediction Algorithm

The best least squares unbiased estimate of the state variables X (see below) can be
obtained by applying the linear Kalman filter. The basis of the prediction is the
previously calculated prediction error which is fed back into the model as a variable.
After receiving the latest observation, the parameter vector and a weighting matrix are
updated recursively for every discrete time instant. Then the predictions can be made.
The covariance matrix of the parameter estimation error, containing all previous

information on the system, is used as the weighting matrix.
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The recursive algorithm of the Kalman filter is given below.
. State model

Xy = Xi1 + w(k) with w(k) = N(0,Q) ... (2.1)
. Measurement model

gr = HTg.Xg+ v(k). withv(k)=N(OR) ... (2.2)
. State prediction

Xkk-1 = Xk-1k-1 (2.3)
. Qutput prediction

Qok-1 = HTk. Xigk-1 (2.4)
. Predicted error covariance matrix

Pux1 = Prik1 + Q 2.5)
. Predictor gain

Gk = Pwx1 Hg [HTx. Pyl Hi + R]7! (2.6)
. State estimation using new measurements

Xk = Xkk1 + Gk vk 2.7}

where innovation vk = gk - qQk/k-1 (one step ahead)
. Error covariance matrix after new measurement

Prx = [1 - Gk HTi] Pracy (2.8)

An important step in applying the Kalman filter for on-line forecasting is the estimation
of error covariance matrices R and Q. An optimal filter will produce an innovation
sequence that is time-wise uncorrelated, having the following property of white noise:

Gﬁ fort=0

2.9
0 fort#0

Cov[vg Vk-¢] = {

There are several methods to estimate R and Q using this property in an on-line mode
[15]; however, these are generally suited for reasonably long series of data. Mehra
[16] presented an algorithm for the case of constant R and Q and shows that the
estimates are asymptotically unbiased and consistent. In the case of rather short flood
events, prior estimates of R and Q could be obtained by applying the filter to the data
used for calibration for various values of error statistics until the filter performance is



satisfactory. This procedure has been successfully applied in the past [17,18] and is
used in this study.

The initial values of Py, R and Q are chosen using the following procedure. The
Kalman gain Gk (= Prk-1 Hk [HTk . Prk-1Hi+ RT'1) is @ vector which is multiplied by
the innovation vk for correcting each element in the parameter vector Xi. If Py is
chosen such that HTy . Pya.-1Hk >> R, then the parameters will be heavily corrected,
resulting in qx - HTx . Xpx = 0. This mode is useful for estimating the unknown
parameters (self-tuning), but not suitable for optimal filtering, as the parameters are
heavily corrected without any filtering taking place. If Py is chosen such that HTj .
Pyk-1Hk << R, then the elements in gain Gy will be so small that hardly any correction
would be done on parameter vector Xx. For real-time operation, appropriate values of
Pp should be chosen for optimal performance of the filter without falling into either of
these extremes. In the case of short flood events, prior estimation of R, Q and Py,
obtained from the data used for calibration, is found to be adequate [9].

A simple procedure is édopted for estimating the statistics of the noise, where the filter
is simulated on the data used for calibration for various values of noise statistics until it
performs satisfactorily. This procedure was found to be satisfactory for short series of
data ranging from 10 to 30 values. The filtering techniques enable information to be
extracted from the difference between model forecast and actual behaviour to ensure
the best possible estimation of model parameters at all times. Whilst the models used
in this study are relatively simple, ideally the models should be as close as possible to
the deterministic part of hydrological processes involved, otherwise the forecasting
scheme relies too heavily upon feedback rather than its capability to simulate. In
critically looking at the usefulness of optimal filtering techniques, one should
remember that it is only a helpful tool to complement and not to replace hydrological
models of different kinds.

3. REVIEW OF REAL-TIME ADAPTIVE RIVER FORECASTING
TECHNIQUES

3.1 Rainfall-Runoff Models

3.1.1 Unit hydrograph models (UH)

The WMO [11] identifies the unit hydrograph (UH) as a widely used rainfall based
model for flood forecasting. The operational UH is usually developed using data from
a large number of observed flood events and an average or typical UH is adopted for
operational use. The use of these average parameters is one of the important causes of
errors in flood prediction. As observed in practice, the UH parameters (i.e. the



ordinates of the UH) can vary from storm to storm and even within a storm. Hino [12]
demonstrated the usefulness of the Kalman filter in sequentially updating the
parameters of a UH model of the form:

q(k) h() . ptk -j+1) + v(k) (3.1)

fl
IN%E

measure of runoff at the outlet of the catchment at any time k

where

q
h ordinates of UH (assumed to be time variant)
p = lumped rainfall over the catchment area

m = memory of the hydrologic system
vV = measurement error.

Much of the non-linear behaviour of the catchment is due to the feedback system
between the excess rainfall and soil moisture. This time varying feedback system
which influences losses and excess rainfall (p¢) must be accounted for in an adequate
representation of the rainfall-runoff process. Thus the UH model shown in Fig. 3.1
could be written as follows:

m
qk) = % hQ).pek-lg-j+1) + quk) + v(k) (3.2)
j=1

where qp = baseflow at the outlet of the catchment

lg = time lag between rainfall excess impulse and its significant
response at the catchment outlet
pe = rainfall excess.

In order to incorporate the variation in the baseflow during the flood, the baseflow at
any time k could be written as o) . qp*, where 0ig . qp" is the baseflow at the

beginning of a storm. Now the model could be written as:

m
Y h(G).Pe(k-lg-j+1) + ox.qp + v(k)
j=1

H

dk

or

g = HTg. Xy + v(k)

where  HTg = [pe(k-lg), pe(k-lg-1), ...pe(k-lg-m+1), qp°]
Xk = [h(1), h(2), ...h(m), ou]T
v(k)
R

measurement error [ = N(0, R)]

variance of measurement error,



m3!slmm

The time varying parameters Xy are sequentially updated as new measurements become
available. If the contribution of baseflow is insignificant, it may be omitted, resulting
in a reduction of time varying parameters.

Proper estimation of rainfall excess is crucial if the UH model is to be used for real-
time flood forecasting. In reality, the initial and continuing loss models normally used
In practice give a wide range of parameter values for different storm events. Initial
loss, which depends on the initial state of the catchment, could be assumed to be equal
to the cumulative rainfall up to the lag 'Ig’ ahead of any significant initial rise in runoff
at the outlet of the catchment, as shown in Fig. 3.1(b).

7;ulln

Initial logs

I Flood hyd
Unit hydrograph ydrograph

TN

m3/s

Qar(k)

— —— ——

<095 lak-Gb

itier - ty time to tk
Figure 3.1: (a) Unit hydrograph; (b) Flood hydrograph

The continuing loss is usually assumed to be either a constant rate or a constant fraction
of the rainfall. If we assume it to be a fraction of actual rainfall, this unknown fraction
could be implicitly incorporated into the time varying parameter Xk and thereby
become part of the parameter estimation process. Since the estimation of rainfall
excess in real-time flood forecasting is difficult, this feature of adaptive methods is
attractive. Thus the modified UH model is given by:

. m
ax = X h'(G).Rftk-1g-j+1) + ox.qp" + v(k)
j=1 |

. or

q = HTg. Xg + v(k) (3.3)

tim:



where HT, = [Rf(k-lg), Rf(k-lg-1), ...Rf(k-1g-m+1), qp"]
Xk = [h*(1), h*2),...h"m), oy JT
v(k) = measurement error [ = N(0, R)]
Rf = average (lumped) rainfall
h*()

!

operational UH ordinates.

As the parameters Xy can vary from storm to storm and even within a storm, it is

modelled by a multivariate random walk equation given by:
Xie1 = Xk + w(k) | (34)

where w(k) = parameter error, a vector of zero mean Gaussian noise sequences
with covariance matrix Q. The diagonal elements of this matrix
are the variances of the corresponding parameters. For the case of
time invariant parameters, these elements would be zero and then
the procedure is identical to the recursive least squares method.

The adaptive method for a UH model starts with the initial values of the parameters
obtained as the average set from the flood events used in the calibration of the model.
For the first time step at the beginning of a flood, the forecast is made using these
average values. When the first outflow measurement of the forecast flow becomes
available, only h(1) and o will be updated, using the Kalman filter, since all the terms
in Hy are zero except the first and last terms; the rest of the parameters in Xy remain
unchanged. The new parameters are used to make an adjusted prediction of outflow.
When the correction of parameters is done after receiving the next measurement of
outflow, h(2) will also be updated in X7, along with h(1) and . This procedure
continues throughout the event, and after only 'm' steps all the parameters in Xy will be

updated simultaneously.

3.1.2 The ARMA type models

Autoregressive moving average (ARMAX) type models have been used to model the
short-term behaviour of hydrologic systems (13,14,15). It has been shown that an
ARMA-like structure of the form of Eqn 3.5 gives an adequate representation of the
dynamics of the rainfall-runoff process:

qk + 01 Qk-1 -.- + Or Qkr = O] Pe(k-lg) + @2 Pe(k-1-1g) - + OsP e(k-s+1-1g) + V) (3.5)

where q = runoff
pe = rainfall excess
o = autoregressive (AR) coefficients

= moving average (MA) coefficients.



'0' and '@’ are parameters analogous to the ARMA parameters of the ARMA process of
order (r,s). The parameter 'lg' is the time lag between the first significant response of

the system to a given impulse and the impulse itself, v(k) is a zero-mean Gaussian noise
process disturbance to account for model error. The weighting parameters of & and ®

in Eqn (3.5) could be interpreted in the following way. As the storm event occurs, the
parameters '@’ will influence the rising limb of the hydrograph and will depend on the '

basin physiographic characteristics and the state of the basin (soil moisture, infiltration,
etc.). Therefore, '@’ should be modelled as a time variant parameter to capture the
proper system response. The autoregressive parameters 0" will influence the falling

limb or recession of the hydrograph [15]. Since these parameters can vary from storm
to storm and also within a storm, it is proposed to model the parmeters by a simple

random walk:
Xk+1 = Xk + w(k) (3.6)

where wy is a vector of zero mean Gaussian noise sequences with covariance matrix Q
and X = [3y, ..., @1, ... T.

Eqgn (3.5) could be written as:

qgc = HTx. Xg + v(k) (3.7

where  HTy = [Qi-1, -Gkers Pe(k-lg), ..o pelk-lg-s+1)]

Xk = [61,...8, 0, ...06]) T
v(k) = measurement error [ = N(0, R)]
R = variance of measurement error.

3.1.3 Stochastic rainfall prediction

A general real-time forecasting model should also allow for input of meteorological
forecast rainfalls. When future rainfall values are not considered for real-time
forecasting, the result is an under-estimation of discharges due to omission of one or
two terms in the model. Thus, when forecasts in advance of one-step ahead are to be
made from the above-mentioned models, some assumptions have to be made about the
behaviour of rainfall. One approach is to treat rainfall as a stochastic process and an
autoregressive model be used to represent rainfall. The model structure can be
identified using the rainfall sequences of the historical flood events, where the model
order is varied until any further increase in the order does not considerably improve the
mean squares of errors. Such an autoregressive model is given below:

Rfip.; = Y1) .Rf(k-1) + v(2).Rf(k-2) + ... ¥(ny) . Rf(k-ny) + Vr(k) (3.8)
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where Vr(k) is a white noise. The Kalman filter is used to update the parameters during
the storm. Thus the state equation is given by:

Rf(k) = HrTy.Xr + Vi(k)

where HrTy = [Rf(k-1), Rf(k-2), Rf(k-nr)]
Xre = [y(1), ¥(2), YD)k

and the measurement equation is given by:

Xrgy = Xrk-1 + wr(k)

3.2 River Routing Models

Linear flood routing models have been successfully applied in flood forecasting. It can
be shown that in more sophisticated models of flood routing, for example, models
based on numerical solutions of St Venants equation, the non-linear finite difference
equations are linearised at each step to facilitate the solution procedure. When
simplified linear models are used for real-time forecasting, similar relinearisation takes
place when the new or current data are incorporated by the recursive algorithm. Thus,
over the time span required for operational forecasting, a simplified linear model can
adequately represent most river dynamics,

Hence a linear model for a river reach can be written in a discretised form given by:

J
Yk) = ILOOL]' Yk-1d-1+1) + ¥ ﬁj. y(k-j-Ig) + v(k) (3.9)
where o) = coefficient of autoregressive (AR) terms
Bj = coefficient of moving average (MA) terms

v(k) = measurement error

Id = leadtime
lg = lagtime

= downstream flow
y = upstream flow.

For the case of the Muskingum method: L=0, J=2, ld=]lg=0. In practice, the model
- order L and J rarely exceed 2 or 3. This model could be written as:

Yk) = Hg. Xk + vk)
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where Hy = [Y(k-Id), Y(k-id-1), .... yi(k-lg), ... y (k-1g,), ....]
XTy = [o1, 02, ... 0L, By, .. Br]
v(k) = measurement error = N(0,R).

The parameters can be considered time variant. If there are uncertainties such as an
imbalance of flow in the reach due to ungauged inflows, the autoregressive terms adjust
to take this into account, thereby improving the forecast.

3.2.1 Identification of Structure and Parameters of River Routing Models

The model consists of a structure defined by the orders L, J, the lags Ig and the
parameters ¢, B;. The structure of the model could be evaluated using either
constrained estimation techniques (CLS) proposed by Natale and Todini in 1976, or by
any other recursive algorithm such as the Instrumental Variable method [23] and
recursive least squares. The order of the model is increased progressively until the
variance of the error reduces significantly. The adopted order is taken as the value at
which any further increase in order does not reduce the error variance. The lags for
each tributary could be evaluated from knowledge of the hydrology of the watershed, or
by using a numerical technique proposed by Wood and Nagy [15], using the CLS
method to obtain impulse response ordinates for each tributary. The time interval up to
the first significant value of the ordinate or each impulse response function is identified
as the lag (Ig). This can also be done by the recursive least squares method as well. In
the presence of high level coloured noise, the Instrumental Variable method (TIVAML)
would be very efficient.

3.3  Multiple Input - Single Output Models (MISO)

Figure 3.2: River network
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A generalised model of a river network is given in Fig. 3.2, which shows a river reach
with a number of tributaries joining the main stream between the upstream and
downstream gauges. The upstream flow and each of the tributary flows are considered
as (multiple) input, while the downstream flow is the output. (For sub-catchments
having rainfall data, these average rainfall values could also be considered as one of the
inputs and is represented in the same way, as the whole system is considered linear.)

Thus the model can be represented by:

Yk = L o Y(k-1d-1) + g, % Bii . yilk-j-lgi) + v(K) (3.10)
1=0 i=1 j=0
where oy = coefficient of autoregressive (AR) terms
Bij = coefficient of moving average (MA) terms
v(k) = measurement error
ld = leadtime
lg; = lag time of ith tributary.

Usually the values of L and Jj rarely exceed 2 or 3. The additional advantage of having
autoregressive terms is that it takes into account the other factors such as unmeasured
tributary inflows and lateral flows, thus improving the quality of flow forecasts. The
model can be written as:

Y(k) = Hg.Xx + v(k) (3.11)

where Hg
XTy

[Y(k-1d), Y(k-1d-1} .... y1(k-1g1) .... yn(k-Ign) ...
a1, 02 ... B oo Byt -]

As the parameters of the model vary during the flood event as well as from one flood
event to another, these parameters (X) could be assumed to vary according to random
walk, given by the following equation:

Xx = Xy 1 + Wk (3.12)
where wy is a vector of zero mean Gaussian noise sequences with covariance matrix Q.

The identification of the structure and parameters of the model in this case can be done
using similar techniques to those discussed in the previous section.
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4. APPLICATION OF REAL-TIME ADAPTIVE FLOOD FLOW
FORECASTING TECHNIQUES

4.1 Rainfall-Runoff Models
4.1.1 Tweed River to Murwillumbah

The Tweed River catchment upstream of Murwillumbah, located in the north-
eastern corner of New South Wales, has a basin area of about 630 km2. The catchment
area includes two fairly symmetrical drainage systems, the Tweed and Oxley Rivers.
These tributaries originate in the mountainous terrain situated along the boundary of the
basin at elevations between 600m and 1100m. Most of the upper catchment is heavily
timbered with natural vegetation. Pockets of land in the lower areas have been cleared
for banana plantations on the slopes and sugar cane on the flat flood plains. This basin
is subject to very intense rainfalls, with 24 hour values up to about 500mm. Variability
of rainfall across the basin can be as high as a factor of three. The predictions available
from the recorded data appear to reflect the differing rainfall patterns experienced in the
catchment.

Ten flood events were considered between 1972 and 1987. Three-hourly rainfall data
during these storms was available from rain stations at Kunghur, Chillingham and
Murwillumbah. Lumped rainfall using Theissen coefficients was used for the analysis.

e, Ty ( ¢ Rain Station
\—\_.\/" < River Station

Figure 4.1: Tweed River Basin
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Four events were used for the calibration of the UH model. During the storm,

cumulative rainfall up to a lag-time ahead of the initial significant rise in runoff was
considered as initial loss. Once the direct runoff (DRO) was obtained from the flood
hydrograph, runoff coefficients oi(i) for rainfall following initial loss were determined

for each event; these are given in Table 4.1.

Table 4.1: Runoff Coefficients

Flood Number Runoff Coefficient (0t;)
1 0.49
2 0.30
3 0.60
4 0.75

Using DRO and rainfall excess Pe (= 0,(i).Rf), the UH ordinates were obtained for each

event separately using the recursive least squares method (which is a recursive form of

the standard least squares method). Table 4.2 shows the results (see also Fig. 4.1.1).

Table 4.2: Estimation of Unit Hydrograph Ordinates

Flood No Ordinate Number
1 2 3 4 5 6 7 8 9 10
1 0.7 1123 |203 95| 6.5 3.8 1.4 1.2 1.0 1.8
2 09 132 1186 | 105 | 7.3 6.8 53 0.8 -19 | -15
3 05| 93 (142 | 108 | 7.1 33 1.7 2.1 2.5 5.2
4 -0.1 98 [162 97155 5.8 3.0 3.0 1.2 0.8
Av* 05 1112 1173 1101 ] 66 | 49 2.9 1.8 1.4 0.8
(am)(Av)H 03 | 5.6 8.7 51| 33 2.5 1.5 0.9 0.7 0.4
*  Av = average of ordinates
+ (dym) = average of runoff coefficients.

Since the ¢ (i) varies widely from storm to storm and is difficult to estimate in real-

time, the average value of the UH ordinates are obtained and then multiplied by the
mean value of 0 (= On). This is used as the initial estimate of the operational UH

ordinates for all the events considered. Since the operational UH ordinates incorporate
the runoff coefficient, the lumped rainfall can be used directly. The UH ordinates



5 UH Ordinates [ m3/s/mm]

Time [x 3hrs]
~—— Average UH Ordinates —+~ Event1 —¥— Event 2
~5— Event3 =¥~ Event4

Fig. 4.1.1 Estimation of UH ordinates for Tweed River to
Murwillambah

{m3/s/mm]

t 2 3 4 5 6 7 8 9 10 11 12 13
Time [x 6hrs]

Fig. 4.2.1 Operational UH ordinates for Wilson River to
Lismore.

[m3/s/mmj
2

t 2 3 4 s 6 7 8 9 10 11 12 13
Time [x 6hrs]

Fig. 4.3.1 Operational UH ordinates for Mitchell River to
Glenaladale.

15
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(model parameters) are subsequently updated for each time step during the event. The
3-hour and 6-hour ahead forecasts are estimated using the following equations,

rerspectively:
Qes1xk = HTyp i - X (4.1)
Qsoe = HTksox - Xk 4.2)

where HTi 1k = [ORf(k-lg), Rf(k-Ig-1) .... Rftk-1g-m+1), qv™]
HTyon = [0,0,Rf(k-1g) .... Rf(k-lg-m+2), qp*]
Xk = [h*(1), h*(2) ... h*(0), o] T
Rf = Jumped rainfall.

4.1.1.2 ARMAX model

The order of the ARMA model and its parameters was estimated by trial and
error, using the direct runoff and rainfall excess for the same flood events mentioned
earlier. The model order was increased until any further changes did not significantly
decrease the mean squares of errors. The final model structure is given below:

qe = 019, + 820, + O1Dek-1) + 2 Pek-2) + D3 Pe(k-3) + V(k) 4.3)

As the estimation of rainfall excess in real-time is difficult, the MA parameters (®;, @,
®3) are multiplied by the mean value of runoff coefficients, giving the initial values of
parameters for all the flood events. Thus the model with initial values of parameters is

given by:

qQ = 1'2‘11{-1 - 0.35qk_2 + 4.2Rfx.1) + 2.5Rfk-2) - 1.4Rfk.3) + v 4.4)

The corresponding operational UH ordinates of the ARMA model are given in Table
4.3. It can be noted that these values compare closely to the ones used in the UH model
(Table 4.2).

Table 4.3: Operational UH Ordinates Corresponding to the ARMA [2,3] Model

Ordinate value (m3/s @ 3 hr intervals)

Interval 1 2 314 5|16 |7 819 |10]11[12

Value 00 |42 |75]|62{ 4836126 |15]09]06]05]0.3
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The 3-hour and 6-hour ahead forecasts are estimated using the following equations,

respectively:
Qr+1/k = HT k. X (4.5)
Gk = Bl - Xk (4.6)

where HTnx = [9p qyp» RE(K), Ritk-1), Rf(k-2)]
HT ok = (94100 G 0 REK-2), Rf(k-3)]
Xk [81, 82, @1, a2, 3]T
Rf lumped rainfall.

4.1.1.3  Stochastic rainfall prediction for the Tweed catchment

The model structure was identified using the rainfall sequences of the four
flood events considered for calibration, where the model order was varied until any
further increase in the order did not significantly improve the mean squares of errors.
The model based on the mean values of the parameters derived for each of the four
events is given below:

Rfpn.1 = 1.097Rf(k-1) - 0.252Rf(k-2) - 0.036Rf(k-3) + vr(k) (4.7
where vr(k) is a white noise. These parameter values were considered as initial values
for this mode! and the Kalman filter was used to update the parameters during the

storm, as mentioned in Section 3.1.3.

The 3-hours and 6-hours ahead rainfall predictions are given by:

Rfk+ixk = Hrlggrx - X

Rfksox = Hrlgopx . X

[Rf(k), Rf(k-1), Rf(k-2)]
[Rfx+1/, Rf(k), Ri(k-1)]

where HrT 1k

Hrl40x

These predicted rainfall values are considered only if they are positive, if not, they are

taken as zero.

4.1.2 Wilson River to Lismore
The Wilson River basin upstream of Lismore is Jocated immediately south of the
Tweed River basin in the north-eastern corner of New South Wales and has a
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catchment area of about 1400 km?2. The river system above Lismore has a fan-shaped
drainage pattern with three distinct drainage areas. All three rise in the elevated ranges
about 1200m above mean sea level to the north Lismore and radiate southward. Each
sub-catchment, individually, can be responsible for flooding at Lismore. The upper
reaches are covered by thick rainforest, whilst in the lower reaches much of the
vegetation has been removed and is covered by pastoral grasslands. Historically,
Lismore is probably the most flood-prone town in Australia, with seventy-one large
floods being recorded since 1890. Rainfall over the catchment shows marked temporal
and spatial variation, with totals during flonds up to 450 mm in the eastemn part of the
basin and as little as 25 mm in the western part.

~
\. ~ r~
]
N N N N
s \-
ANyt
Nimbin o t \
\,
3 3 \.
% .Federal.\.\'
/
% 3 i
d Y & v
% f ~/
p /
R ~
4
o Rain Station . h . o— .
4 River Station N — Lismore p I PR T
Figure 4.2: Wilson River Basin
4.1.2.1 Unit hydrograph model

Four events were used for the calibration of the UH model, as was the case for
the Tweed River. The runoff coefficients o (i) varied between 0.6 and 0.7 for these
events. The procedure mentioned in Section 4.1.1.1 was adopted to determine the
operational 6-hour UH ordinates. The values of the operational 6-hour ordinates are
given in Table 4.4 (see also Fig. 4.2.1, p.15).

Table 4.4: Operational UH Ordinates for the Wilson River

Ordinate value (m3/s @ 6 hr intervals)

Interval

4

5

6

.

8

9

10

11

12

13

Value

0.0

1.91

4.27

5.86

6.86

3.52

4.82

4.31

3.84

2.72

2.16

1.70

1.03
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The 6-hour and 12-hour ahead forecasts are estimated using the following equations,

respectively:
Qesok = HTy o0 . X 4.8)
Qrare = Hkwan - Xk 4.9)

where HTy,2x = [0, Rf(k), Rf(k-2) .... qp™]
HY 4k = [0,0, Rf(k), Rf(k-2) .... qp”]
Xk [h*(1), h*@2) ... h*G), oTy
Rf lumped rainfall.

4.1.2.2 ARMAX model

The order of the ARMA model and its parameters was estimated by fitting to
the operational UH ordinates obtained in Section 4.1.2.1. The model order was
increased until any further changes did not significantly decrease the mean squares of
errors. An example of this procedure is given in Appendix 1. The model structure is

given below:

q = 81 g1 + O2qk2 + 0 Rfgyy) + M Rfg2) + @3 Rfks) + @aRfkqy + vao -
(4.10)

The ARMAX model with initial values of parameters is given by:

q =0.95qx.1 - 0.13gx2 + 2.0Rfk.1) + 3.3Rfk2) - 3.4Rfk4) + 3.0Rf6) + V(i)

4.11)

The 6-hour and 12-hour ahead forecasts are estimated using the following equations,

respectively:
Qo = Hlksai - Xk (4.12)
Qpare = Hlkaar - Xk (4.13)

where HTyon = (g4, g;_;. Rf(K), Rf(k-2), Rf(k-4), Rf(k-6)]
HTyiax = [Qeon0 Qo 0 Rit-2), Rf(k-4), Rf(k-6)]
Xk = [81, 82, @1, o, @3, g]F
Rf = lumped rainfall (at 6-hour intervals).
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4.1.3 Mitchell River to Glenaladale

Mitchell River Basin

& Rain Sition

« River Station

Figure 4.3: Mitchell River Basin

4.1.3.1 Unit hydrograph model
As data for three events only was available, two of the events were used for the

calibration of the UH model. The runoff coefficients o.(i} for the two events were 0.27
and 0.37. The procedure mentioned in Section 4.1.1.1 was adopted to determine the
operational 6-hour UH ordinates. The values of the operational 6-hour UH ordinates

are given in Table 4.5 (see also Fig. 4.3.1, p.15).
Table 4.5: Operational UH Ordinates for the Mitchell River to Glenaladale

Ordinate value (m3/s @ 6 hr intervals)

Interval 1 2 314 5 6 | 7 &8 19 10 (11 }12]13

Value 0.0 |511710.5{199 |90 |85 |45 [38 32|19 [1311.0 /0.3

The 6-hour and 12-hour ahead forecasts are estimated using the following equations,

respectively:
Qeok = Hlxs2k . Xk (4.14)
Qe = Hlkeark - Xk (4.15)
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where HTyonx = [0, Rf(k), Rf(k-2) .... qp*]

HT 4 = [0,0, Rf(k), Rf(k-2) .... qp*]
Xk = [h*(1), h*2) ... ™), o]Ty
Rf = lumped rainfall.

4.1.3.2 ARMAX model

The order of the ARMA model and its parameters was estimated by fitting to
the operational UH ordinates obtained in Section 4.1.3.1. The model order was
increased until any further changes did not significantly decrease the mean squares of
errors. The model structure is given below:

9 = 61qk2 + 2qr4 + @1 Rfkg) + Ry + vy (4.16)

The ARMAX model with initial values of parameters is given by:

q = 0.976qk-2 - 0.139qk4 + 5.10Rf(x2) + 5.52Rf(x.4) + V(k) 4.17)

The 6-hour and 12-hour ahead forecasts are estimated using the following equations,

respectively:
Aok = Heor . Xk (4.18)
Qaake = Hlksak - Xk (4.19)

where HTwon = gy Q9. RE(K), Rf(k-2)]
HTgax = [Gx 42/ 9> Os RE(k-2)]
X [81, 82, @y, an]T
Rf

lumped rainfall (at 6-hour intervals).

4.2 River Routing Model

4.2.1 Routing upper reach of Mary River (Dagun Pocket to Gympie)

Data for only two events were available for the study and both were used for calibration
of the river routing model. The order L, J and the parameters 1d and 1g in Eqn (3.9)
were identified using the recursive least squares method. The procedure is similar to
that mentioned in Section 4.1.1.2. The mean value of the parameters was taken as the
initial value for the model. The model is given by:

Ygy(k) = 0.66.Ygy(k-1) + 0.27.ypg(k-1) + 021.ypg(k-2) + v(k}  (4.20)

where Ygy = runoff at Gympie
ypg = runoff at Dagun Pocket.

—=



The model can be written as:

YGy(k)

where Hy

X
Vik)

= Hi. Xk + V()

Ik

[Ygy(k-1), ype(k-1), ype(k-2)]
[0, B1. B2l

measurement error ~ N(O,R).

3-hours ahead prediction is given by:

YGy(k+1) = Hg4 . Xk

where Hi+1 = [Yoy(k), yDe(k), ype(k-1)].

4.3  Multiple Input - Single Qutput Models (MISO)
4.3.1 Mary River to Home Park

o Raln Siation

« River Statlon

Mary River Basln

[y "

Marodian

22

"} Home Park

MunnaCk;
[y~

Brooyar

B ]L Miva

Wide Bay Ck

i

Figure 4.4: Mary River Basin

(b)
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Fig. 4.4(a) shows the catchment area with stream gauging stations and rainfall stations.
Mary River up to Home Park is considered in this study. The schematic diagram of the
network is shown in Fig. 4.4(b). The modelling study was approached in three stages.
At stage 1, a rainfall-runoff model was used to predict the runoff at Gympie. At stage
I1, the multiple inputs are the flows at Gympie and Brooyar and the output is the flow at
Miva. Finally, at stage III, flows at Miva and Marodian are considered as inputs, while
the flow at Home Park is considered as an output.

4.3.1.1  Rainfall-runoff model to Gympie
Data for three events were available for the study. Two events were used for

the calibration of the model. The procedure given in Section 4.1.1.1 was adopted for
obtaining the operational UH. The runoff coefficients o,(i) varied between 0.69 and

0.77 for these events. The values of the operational 6-hour UH ordinates are given in
Table 4.6.

Table 4.6: Operational UH Ordinates for the Mary River to Gympie

Ordinate value (m3/s @ 6 hr intervals)

Interval | 1 | 21 3|4 5|67 |89 i101}11]12]13

Value 1.9 52160176 |153]165[145[9.5 |53 |49 {48 |45 ]2.1

The order of the ARMAX model and its parameters was estimated and the model with
initial values is given by:

gk = 1.31qx-2 - 0.45qk4 + 2.0Rfx2) + 3.3Rf4) - 3.4Rfx6) + 3.0Rfk8) + vy
4.21)

The 6-hour and 12-hour ahead forecasts were estimated using the following equations

respectively:

a2k = HTpoox . Xk
Qk+4/k = HTxeak . Xk

[qx, gk-2, Rf(k), Rf(k-2), Rf(k-4), Rf(k-6)]

where HT o

HTax = [Qk+2/k ks 0, RE(k-2), Rf(k-4), Rf(k-6)]
Xk = [61-: 52’ @y, 0y, @3, m4]T
Rf = lumped rainfall (at 6-hour intervals).
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4.3.1.2 River routing to Miva
Data for four recent events were available for the study and all of them were
used for calibration. The order L, J1, J2 and the parameters 1d, 1g; and 1g7 in Eqn (3.10)

were identified using the recursive least squares method. The procedure is similar to
that given in Section 4.1.1.2. The mean value of the parameters was taken as the initial
value of the model. The model is given by:

Ymu(k) = 0.69Ymy(k-2) + 0.61yGy(k-2) - 0.31yGy(k-4) + 0.61yp(k-2) + V(K)

(4.22)
where YMmy = runoff at Miva
ygy = runoif at Gympie
yer = runoff at Brooyar.

The model can be written as:

Ymvk) = Hg.Xx + V(k)

where Hk = [YMy(k'z): YGY(k-Z)s YGy(k-4), YBr(k'z)]
XTe = [ou, B1,1, B12, B2l
V(k) = measurement error = N(QO,R).

6-hours ahead prediction is given by:

YGy(k+2/k) = Hyg4z . Xk
where Hk+2 = [YGy(K), yDe(K), YDg(k-2), yBr(k)].

4.3.1.3  River routing to Home Park

Data for the same four events used in 4.3.1.2 were used for calibration. The
order L, J1, J2 and the parameters 1d, 1g; and 1g2 in Eqn (3.10) were identified using the
procedure given in Section 4.3.1.2. The mean value of the parameters was taken as the
initial value of the model. The model is given by:

Yap(k) = 0.69YHp(k-3) + 0.61ymy(k-3) - 0.31ymy(k-6) + 0.61yme(k-3) + v(k)
. (4.23)

runoff at Home Park

where YHp

YMv
YMr

runoff at Miva

runoff at Marodian.
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The model can be written as:

Yup(k) = Hg.Xkx + V(k)

where Hx = [YHpk-3), yMv(k-3), ymv(k-6), ym(k-3)]
XTx = [ou. Br1, B2, B21]
V(k) = measurement error ~ N(O,R).

9-hours ahead prediction is given by:

YGy(k+3/k) = Hiss. Xk

where Hisz = [YHpK), ymv(k), yMv(k-2), yme(K)].

5. DISCUSSION OF RESULTS

The following least squares criteria were used for comparing the results of different
methods.

(i) Coefficient of efficiency

A measure of association between predicted and observed flows is given by the sum of

the squares of the residuals:

n
St = 2 [qobs() - ‘]pred(i)]2
=1

where qobs(j)} and qpred(j) are the observed and predicted flows, respectively. A
measure of variability of the observed flows is given by:

Sq = [Gobs() - Qobs]?

J

INSE

where gobs 1s the mean observed flow at the time interval considered (1 to n). Nash and
Sutcliffe [1] introduced the efficiency of a model (or the coefficient of efficiency) as
the variance of the observed flow accounted for by the model:

(i) Coefficient of persistence
In real-time, the no-model prediction 1s better represented by the latest measurement of
the flow. Thus, a coefficient of persistence P for real-time models can be defined by:
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n

2 [qobs ~Apred J)]

= =1
Poay =1~

i [qobs(-] qobs(-' ld)]2

=1

where 'Id' is the predicted lead and P is a function of the forecast lead 'Id'.

5.1 Rainfall-Runoff Models

5.1.1 Tweed River

The estimation of the typical UH ordinates clearly indicates that the average time to
peak lies around 6-9 hours and this observation is further supported by the ARMA (2,3)
mode] parameters. The model was applied to the four events used in the calibration,
and six other events, for testing of the models. In addition, the model was applied with
and without forecast of future rainfall.

A. Flood flow forecasting without future rainfall input

Adaptive linear models were applied to all the events, omitting the terms in the models
which had future rainfall input. Figs. 5.1.1.1 and 5.1.1.2 show the performance of these
two linear models on the events used for calibration. Real-time forecasting
performance (3-hours and 6-hours ahead) on the events used for testing is shown in
Figs. 5.1.1.3, 5.1.1.4 and 5.1.1.5. The overall performance of the two models was
reasonably satisfactory [19]. It was observed that the reason for a minimal warning for
event number 8 was that the main rainfall cells associated with this event moved down
the catchment towards the outlet of the basin [20]. This results in a short time to peak;
the adaptive models tend to perform better for this event to a certain extent, as shown in
Fig. 5.1.1.4(b & d). The statistics of forecasting performance of adaptive UH and
ARMA models are given in Tables 5.1.1.1 and 5.1.1.2, respectively.

The overall performance of these two linear models was similar, although the ARMAX
model required a lesser number of parameters. As a consequenf:e of not considering
future rainfall predictions, forecasts were increasingly underestimated as the forecasting

lead time increased, due to the omission of some terms in the model.
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Table 5.1.1.1: Forecast Statistics for the On-Line UH Model
Coefficient of Coefficient of
Flood Qbar RMSE efficiency persistence
no. (m3/s) Qbar (%) (%)
3 hrs 6hrs | 3hrs 6 hrs 3 hrs 6 hrs
1 484 0.19 0.42 93.7 66.0 85.0 24.0
2 315 0.38 0.55 84.3 60.2 24.9 51.0
3 507 0.16 0.39 93.9 62.1 65.2 134
4 526 0.16 0.33 92.8 66.6 70.2 53.3
5 832 0.10 0.25 96.1 73.3 36.7 -1.3
6 910 0.16 0.32 85.5 30.3 34.7 3.3
7 860 0.12 0.30 94.3 13.6 91.9 60.6
8 810 0.30 0.52 74.1 -11.4 -10.5 -39.2
9 590 0.17 0.37 90.0 47.6 375 21.6
10 630 0.10 | 028 | 976 79.4 93.2 81.4
Table 5.1.1.2: Forecast Statistics for the On-Line ARMAX Model
Coefficient of Coefficient of
Flood Qbar RMSE efficiency persistence
no. (m3/s) Qbar (%) (%)
3 hrs 6hrs | 3 hrs 6 hrs 3 hrs 6 hrs
1 484 0.25 0.48 89.1 549 74.0 -0.8
2 315 0.19 0.35 96.1 85.3 81.5 82.0
3 507 0.09 0.27 97.8 81.7 87.5 58.0
4 526 0.13 0.31 95.0 70.5 79.4 58.9
5 832 0.06 0.15 98.6 90.3 77.7 64.3
6 910 0.11 0.24 92.0 57.3 65.3 51.7
7 860 0.17 0.34 88.0 -29.8 829 80.3
8 810 0.27 0.49 78.1 -8.2 6.9 -25.2
9 590 0.09 0.24 97.2 78.7 83.4 70.3
10 630 0.14 0.31 96.3 75.9 90.4 83.7
where Qbar = average observed discharge
RMSE = Root Mean Squares of Error.
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B. Flood flow forecasts with predicted rainfall

In order to improve on the model performance, the 3-hours and 6-hours ahead predicted
rainfall obtained from an adaptive stochastic rainfall model operated in parallel with the
adaptive linear model was used.

The performance during the four flood events used in the calibration is given in Figs.
5.1.1.6 and 5.1.1.7. Figs. 5.1.1.8, 5.1.1.9 and 5.1.1.10 show the real-time forecasting
performance on the events used for testing. The statistics of forecasting performance of
adaptive UH and ARMA models using predicted rainfall are given in Tables 5.1.1.3
and 5.1.1.4, respectively. As might be expected, rainfall is predicted one step beyond
the end of the storm, resulting in overestimation and a time delay in the peak flow,
although there is a better overall fit in the rising limb of the flood hydrograph. Again,
flood number 8 gives anomalous values.

Table 5.1.1.3: Forecast Statistics for the On-Line UH Model (with Predicted
Rainfall using the AR(3) Model)

Coefficient of Coefficient of
Flood Qbar RMSE efficiency persistence
no. (m3/s) Qbar (%) (%)
3hrs | 6hrs | 3 hrs 6 hrs 3 hrs 6 hrs
i 484 0.20 034 | 930 76.8 84.3 524
2 315 0.39 0.57 83.4 61.5 24.8 55.6
3 507 0.14 0.23 95.3 86.3 74.7 70.7
4 526 0.13 0.23 93.0 77.0 78.4 77.0
5 832 0.10 0.18 96.1 86.4 39.6 50.6
6 910 0.13 0.24 88.9 56.7 514 42.1
7 860 013 | 022 | 931 | 416 | 916 | 838
8 810 0.28 0.48 78.1 16.6 14.5 6.2
9 590 0.16 0.29 91.2 66.9 48.6 53.8
10 630 0.13 0.28 96.3 81.2 90.5 84.5
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Table 5.1.1.4: Forecast Statistics for the On-Line ARMAX Model (with Predicted
Rainfall using the AR(3) Model)

Coefficient of Coefficient of
Flood Qbar RMSE efficiency persistence

no. (m3/s) Qbar (%) (%)

3hrs | 6hrs | 3hrs 6 hrs 3 hrs 6 hrs

1 484 0.25 0.44 89.1 62.1 74.0 222

2 315 0.19 0.39 96.1 81.5 81.5 78.7

3 507 0.09 0.22 97.8 88.1 87.5 74.5

4 526 0.13 0.28 95.0 77.8 79.4 70.5

5 832 0.06 0.12 | 98.6 93.2 71.7 76.0

6 910 0.11 024 | 920 57.7 65.3 53.9

7 860 0.17 0.28 88.0 9.9 82.9 89.1

8 810 0.29 060 { 78.1 -30.2 6.9 -35.5

9 590 0.09 0.22 97.2 81.2 834 75.5

10 630 0.13 0.35 96.3 70.6 90.4 81.9

where Qbar = average observed discharge
RMSE = Root Mean Squares of Error.

Table 5.1.1.5: Summary of the Results of Peak Runoff Prediction

Q (%) T (hrs)
UH model ARMA model UH model ARMA model
non- non-
adaptive adaptive adaptive adaptive adaptive adaptive
3hrs | 6hrs | 3hrs | Ghrs 3hrs | 6hrs| 3hrs | 6hrs
* Ii* | ahead | ahead | ahead | ahead | I* O* | ahead| ahead| ahead | ahead
Ave | 107 | 104 [97.5| 84.5107.7|107.0| 1.7 } 1.7 | 1.1 | 3.5 04 | 35
SD 40 15 ] 841 13.1 791 159|126 | 26 | 28 | 2.0 1.9 { 2.0
I*: using best estimates of IL for each event and median values of CL and basin

IT*:

parameters.

using best estimates of IL and CL for each event and median values basin

parameters [19], where

Q(%) =

Q(modelled peak)

Q(observed peak)
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T(hrs) = T(modelled peak) - T(ohserved peak)-
C. Comparison of adaptive models with non-adaptive models
The statistics of the difference between peak discharges and timing of the peaks of the
modelled and observed hydrographs for the seven events considered in adaptive and
non-adaptive methods are given in Table 5.1.1.5. The performance of the ARMA
models is slightly better than that of the UH model.

Considerable improvements brought in by the use of adaptive methods are clearly
evident from these tables. Although the average error in peak flow prediction and
timing was similar for all the methods, both adaptive models showed a clear advantage
in modelling the range of flood events used, as indicated by the lower standard
deviation, and so are considered to be more suitable for real-time forecasting.

5.1.2 Wilson River

The estimation of the UH ordinates indicate that the average time to peak lies around 21
to 27 hours (Table 4.4). Four out of the nine events were used for calibration of the
model. Prediction of future rainfall was not considered here. Figs. 5.1.2.1 and 5.1.2.2
show the performance of these two linear models on the events used for calibration.
Real-time forecasting performance (6-hours and 12-hours ahead) on the events used for
testing is shown in Figs. 5.1.2.3,5.1.2.4 and 5.1.2.5.

The overall performance of the two models was satisfactory [19]. For event number 9,
rainfall was observed to be only in the eastern part of the catchment, resulting in
minimal warning for this flood. This could be due to errors in the estimation of rainfall
due to a very localised storm, not properly observed at the rainfall stations. The
statistics of forecasting performance of the adaptive UH and ARMAX models are given
in Tables 5.1.2.1 and 5.1.2.2, respectively, as well as a comparison for each method
with a non-adaptive model (n.adap). The non-adaptive model uses the set of
parameters developed at the start of each event and was fixed throughout the event.
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Table 5.1.2.1: Forecast Statics for the On-Line UH Model
(for 6- and 12-hour lead times)

Flood { Qbar RMSE Coefficient of Cocfficient of
No | (m3s) Qbar efficiency (%) persistence (%)
6hrs | 6hrs | 12hrs | 6hrs | 6Ghrs 12hrs | 6hrs 6hrs | 12 hrs
n.adap | adap adap | n.adap| adap adap n.adap | adap adap
1 439 | .236 | .089 | .150 87.5| 98.2 94.3 251 871 81.5
2 351 |.599 | .196 | .326 | -42.3| 84.7 477 |-420 442 | -20.6
3 582 | 363 | .134 | .187 7041 96.0 90.8 | -514] 794 80.4
4 659 |.162 | .084 | .117 90.4| 97.4 93.9 59.5] 89.2 87.0
3 634 | .288 | .148 | .237 82.7| 954 86.4 8.1] 76.0 67.9
6 594 |.638 | .343 | 373 |-161 244 10.6 |-276 -8.7 | -15.7
7 323 |.282 | .142 | .259 72.2| 94.5 80.0 274| 8l.6 49.2
8 678 | .256 | .126 | .208 83.0] 959 87.0 27.2 825 71.2
9 714 | .347 | 249 | 347 704 84.8 64.7 289] 63.4 61.7
Table 5.1.2.2:  Forecast Statics for the On-Line ARMAX Model
(for 6- and 12-hour lead times)
Flood | Qbar RMSE Coefficient of Coefficient of
No | (m¥s) Qbar efficiency (%) persistence (%)
6hrs | 6hrs | 12hrs | Ghrs 6 hrs 12 hrs 6 hrs 6 hrs 12 hrs
nadap | adap adap | n.adap| adap adap n.adap | adap adap
1 439 | .083 | 082 | .167 | 98.5 | 985 929 | 879 | 88.1 | 713
2 351 [.162 | .114 | .173 | 89.6 | 949 852 | 619 ] 812 | 659
3 582 [.115 | 125 | 210 | 97.0 | 965 884 | 848 | 820 | 753
4 659 | .087 | .093 | .129 | 97.2 | 969 92.5 88.4 86.8 34.0
5 634 |.114 | .130 | .234 | 97.3 | 965 86.8 859 81.6 | 68.9
6 594 |.154 | .150 | .175 847 | 855 80.4 78.0 792 | 74.6
7 323 |.109 | .134 { .207 | 96.8 | 95.1 872 | 832 | 835 | 675
8 678 |.097 | .114 | .194 | 976 | 96.6 88.7 89.6 85.5 75.0
9 714 | .254 | 259 | 407 | 84.1 | 83.5 51.5 61.7 604 | 473
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Comparison of Adaptive Models with Non-Adaptive Methods

The statistics of the difference between peak discharges and timing of the peaks of the
modelled and observed hydrographs for the eight events considered in adaptive and
non-adaptive methods are given in Table 5.1.2.3. The performance of ARMA models
is better than that of the UH model. The improvement brought in by the use of adaptive
methods is evident from these tables. The adaptive models, by virtue of the lower
standard deviation in both cases, are considered to be more suitable for real-time

forecasting.

Table 5.1.2.3: Summary of the Results of Peak Runoff Prediction

Q (%) ' T (hrs)
UH model ARMA model UH model ARMA model
non- non-
adaptive adaptive adaptive adaptive adaptive adaptive

6hrs | 12hrs | 6hrs | 12 hrs 6hrs | 12hrs| 6hrs | 12 hrs
I* II* 1} ahead | ahead | ahead | ahead | I* I1* | ahead | ahead| ahead | ahead

Ave | 107 | 103 j 114 {115 | 107 | 108 | -3.0(-3.0 | 0.8 | 4.5 04 | 3.5

SD 18 19 1 8.0 14 7.5 145 45| 45 [ 20| 2.1 19 | 2.0

I*: using best estimates of IL for each event and median values of CL and basin

parameters.
IT*: using best estimates of IL and CL for each event and median values basin

parameters {19], where

Q(modelled peak)
Q(observed peak)

Q%) =

T(hrs) = T(mode]led peak) - T(ohserved peak)-

5.1.3 Mitchell River to Glenaladale

The estimation of the UH ordinates indicates that the average time to peak lies around
15-21 hours (Table 4.5). Two events were used for calibration of the model and the
other two for testing. The uncertainty of the rainfall input is rather high. Fig. 5.1.3.1
shows the performance of the model on the data used for calibration. Fig. 5.1.3.2
shows the real-time forecasting performance 6 hours and 12 hours ahead. The statistics
of forecasting performance of the UH and ARMAX models are given in Tables 5.1.3.1
and 5.1.3.2, respectively.
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Fig. 5.1.3.2 Observed and predicted flow for Mitchell river to Glenaladale.



50

Table 5.1.3.1: Forecast Statics for the Mitchell River (UH Model)

Flood | Qbar RMSE Coefficient of Coefficient of
No | (m3fs) Qbar efficiency (%) persistence (%)

6hrs | 6hrs { 12hrs | 6hrs | 6hrs 12 hrs 6 hrs 6 hrs 12 hrs
n.adap | adap adap | nadap| adap adap n.adap | adap adap

255 1027 | 0.19 | 0.26 | 849 | 92.7 83.3 6.7] 54.9 56.3
190 [0.74 | 044 | 043 | -1.5| 64.1 578 | -93.4| 31.6 65.7
615 [0.56 | 0.31 | 0.25 | 265 | 77.6 81.6 | -50.3| 54.2 76.9
527 1043 | 0.33 | 0.35 | -77.0] -2.5 | -97.6 |-217 [ -83.0 [-105

£ W N =

Table 5.1.3.1: Forecast Statics for the Mitchell River (ARMAX Model)

Flood | Qbar RMSE Coefficient of Coefficient of
No | (m’fs) Qbar efficiency (%) persistence (%)

6hrs | 6hrs | 12hrs | 6hrs 6 hrs 12 hrs 6 hrs 6 hrs 12 hrs
n.adap | adap | adap | n.adap| adap adap n.adap | adap adap

255 | 0.14 | 0.14 | 0.26 | 96.0 | 96.1 84.1 | 741 | 743 55.6
190 {029 | 0.29 | 044 | 845 | 84.0 56.7 | 70.5 | 69.6 64.8
615 10.26 | 027 | 031 | 88.1 } 86.3 803 | 71.0 | 66.5 68.2
527 10.17 | 0.11 | 0.21 | 72.9 | 884 28.5 | 514 | 79.2 25.5

AW N

52 River Routing: Dagun Pocket to Gympie

An ARMAX model of three parameters was identified as the best fit for this reach.
Figs 5.2.1(a) and (b) show the performance of adaptive and non-adaptive methods for
the events used for calibration of the model. The 3-hours ahead real-time forecasting
performance for the test event is shown in Fig. 5.2.1(c). Generally, the adaptive
method performs better than the non-adaptive (fixed parameter) method for all these
events. The statistics of forecasting performance for the adaptive and non-adaptive

methods are given in Table 5.2.1.
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Table 5.2.1: Forecast Statistics for River Routing: Dagun Pocket to Gympie

Coefficient of Coefficient of
Flood Qbar RMSE efficiency persistence
no. (m3/s) Qbar (%) (%)

3hrs | 6hrs | 3hrs 6 hrs 3 hrs 6 hrs

1 3041 0.09 006 | 97.7 98.9 350 794

2 1186 0.09 006 | 97.8 99.1 13.8 63.2

3 525 0.13 006 | 832 95.7 -8.0 72.6
where Qbar = average observed discharge

RMSE = Root Mean Squares of Error.

5.3  Multiple Input - Single Output Models (MISO)

As shown in Fig. 4.4(a), the Mary River catchment is divided into three stages,
resulting in three models: the first one up to Gympie, the second one up to Miva, and
the third one up to Home Park.

5.3.1 Rainfall-runoff model to Gympie

From the unit hydrograph, it can be observed that the time to peak lies around 15-21
hours. Figs 5.3.1.1(a) and (b) show the performance of the ARMAX model for the two
events used in calibration. For these events, the non-adaptive method seems to perform
better than the adaptive method, but the real test of a model is how well it can predict
events to which it was not calibrated. The event used for testing is shown in Fig.
5.3.1.1(c), where the adaptive method performs better than the non-adaptive one,
although it is difficult to be conclusive without testing the model on other events. The
statistics of forecasting performance of the ARMAX model] are given in Table 5.3.1.

Table 5.3.1: Forecast Statics for the Mary River to Gympie (ARMAX Model)

Flood | Qbar RMSE Coefficient of Coefficient of
No | (m3/s) Qbar efficiency (%) . persistence (%)

6hrs { 6hrs | 12hrs | 6hrs 6 hrs 12 hrs 6 hrs 6 hrs 12 hrs
n.adap | adap adap | n.adap| adap adap n.adap | adap adap

1 | 26711009 j 0.12 | 0.27 | 98.4 | 96.7 83.0 | 909 | 81.7 | 58.1
2 | 1050[0.08 | 0.08 | 0.16 | 984 | 89.3 927 | 905 | 89.7 | 79.9
3 1] 459 1045 | 0.28 | 0.62 76 | 658 | -204 | -163 2.6 | -265

where Qbar = average observed discharge
RMSE

Root Mean Squares of Error.
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5.3.2 MISO model for Mary River to Miva

In this case, all four events were used in the calibration. Fig. 5.3.2.1 shows the 6-hours
ahead forecast performance for all four of these events. For these events, the non-
adaptive method seemed to perform equally as well as the adaptive method, but the real
test of a model is how well it can predict events to which it was not calibrated.
Therefore, it is difficult to be conclusive without testing the model on other events. The
statistics of forecasting performance of the ARMAX model are given in Table 5.3.2.

Table 5.3.2: Forecast Statistics for River Routing: Mary River to Miva

Coefficient of Coefficient of
Flood Qbar RMSE efficiency persistence
no. (m3/s) Qbar (%) (%)

6hrs | 6hrs | 6hrs | 6hrs | 6hrs | 6hus
n.adap | adap |n.adap | adap n.adap | adap

2948 0.07 0.06 | 94.2 94.1 84.6 85.9
2302 0.09 0.09 | 91.1 90.5 69.6 71.1
1726 0.14 0.13 | 77.1 72.1 45.5 40.2
3125 0.05 0.08 99.1 97.7 94.5 86.6
where Qbar = average observed discharge

RMSE = Root Mean Squares of Error.

o WM =

5.3.3 River routing using the MISO model for the Mary River to Home Park

All four events that were available for the study were used in the calibration of the
MISO model. The performance of 9-hours ahead forecasts of the MISO model is
shown in Fig. 5.3.3.1. For these events, the adaptive method did not give significant
improvements on the forecasts made by the non-adaptive method, but it is difficult to
be conclusive without further testing. The statistics of forecasting performance of the
ARMAX model are given in Table 5.3.3.
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Table 5.3.3: Forecast Statistics for River Routing (MISO):
Mary River to Home Park
Coefficient of Coefficient of
Flood Qbar RMSE efficiency persistence
no. (m3/s) Qbar (%) (%)
9 hrs Ohrs | 6hrs 6 hrs 6 hrs 6 hrs
nadap | adap |[n.adap | adap n.adap | adap
1 2345 0.10 0.14 93.2 87.7 36.8 76.0
2 2038 0.11 0.10 | 925 94.3 83.5 87.4
3 1584 0.18 0.09 38.9 97.0 72.8 92.7
4 3218 0.12 0.11 95.7 96.2 87.6 88.9
where Qbar = average observed discharge '
RMSE = Root Mean Squares of Error.

6. CONCLUSIONS

6.1 Rainfall-Runoff Models
Two adaptive linear models (adaptive unit hydrograph and ARMAX) were applied to

the following catchments {observations at 3-hour intervals):

1. Tweed River (630 km2), which experiences a wide range of runoff coefficient

values for different storms.
2.  Wilson River (1400 km?2), which has a narrow range of values of runoff

coefficient for different storms.
3. Mitchell River (2905 km?2), where the quality of rainfall input is poor, having

three rainfall stations located in the lower part of the catchment.

Given these constraints, the problems faced in real-time forecasting of floods

identified earlier were addressed through:

(a)

®)

adopting a simple linear model where the fraction of average rainfall was

assumed to represent the continuing loss and was incorporated as a model

parameter; and

using an adaptive method (Kalman filter) to improve the mode! forecasts

using the discrepancy between observed and model output at each time step.

For the Tweed River, both the linear models performed satisfactorily, although the

ARMAX model required a lesser number of parameters. Because of the fast response

time of the catchment, the use of 3-hours ahead predicted rainfall was needed to

improve the performance of the model for the rising limb of the flood hydrograph. The
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runoff coefficient was found to vary over a wide range for these events, .resulting in
significant variation in parameters from one event to another. Thus, the adaptive
methods performed significantly better than the non-adaptive methods for the
catchment.

In the case of the Wilson River, the overall performance of the ARMAX model was
slightly better than that of the UH model. The ARMAX model showed no significant
improvement with the use of the adaptive method compared to the non-adaptive one.
As the runoff coefficient was found to be stable for the events considered, the
parameters, too, did not change much from one event to another.

For the Mitchell River to Glenaladale, the ARMAX model performed better than the
UH model. This was because the quality of rainfall data affects the performance of the
UH model much more than that of the ARMAX model, and the ARMAX model is
better suited to situations where uncertainty of rainfall input is high.

6.2 River Routing Method _

The same linear models were applied to the river routing problem between the two
gauging stations, Dagun Pocket and Gympie on the Mary River (Queensland). The
models were considered to perform satisfactorily for all three events. The 3-hours
ahead forecasts of the adaptive method was marginally better than that of the non-
adaptive method, as the parameters were updated for different events; the adaptive
method took into account unmeasured inflows by updating the corresponding
parameters. Firm conclusions are not considered possible as only three events were
used; however, it would be worthwhile examining the performance of the model for
longer lead time forecasts, by either fitting a model with longer lead times or by
applying the same model with predicted runoff (3 hours ahead) as input.

6.3 Multiple Input - Single Qutput (MISO) Models

Mary River to Home Park was considered in three stages: a rainfall-runoff model up to
Gympie, followed by MISO models up to Miva and Home Park, respectively. In all
four events used for calibration, the adaptive method showed no significant
improvement over non-adaptive methods, although without testing the method on
events other than those used for calibration, no firm conclusions can be made. By
considering the total catchment as the linking together of these three stages, forecasts
can be made with a lead time that is equivalent to the summation of lead times at each
of the stages, thereby achieving a longer overall lead at the downstream point, although
this involves neglecting inflows in the intermediate stages.
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Recommendations

Adaptive methods perform better in situations where uncertainty is high. They are best

suited for catchments whose model parameters vary significantly from one event to

another.
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APPENDIX 1
REVIEW OF TRANSFER FUNCTION MODELS

These models can be used to represent the dynamic behaviour of a hydrologic system
and are parsimonious in their use of parameters. If Y(k) and X(k) are discrete time
measurements of storm runoff and rainfall excess, respectively, a linear relationship
between Y(k) and X(k) in current and earlier time periods, X(k-1g), X(k-1g-1), X(k-lg-
2) ...., may be written as follows:

I

Y(k) = hy.X(klg) + hp.X(k-lg-1)... + hy . X(k-lg-m)
or

Y(k)

H[B] . X(k-Ig) (AL1)

where H[B] = [h] + h2.B + h3.B? .... hyp41.B™] is the transfer function of a linear filter,
B the backward shift operator, and lg the number of zero ordinates prior to the rising
limb. The parameters hy, hp, h3, ..., hp41 are considered as the ordinates of a finite
memory impulse response for a catchment. If the series H{B] converges for IBl < 1,
then the system is stable.

Unit Hydrograph Ordinates

ﬁl!l““lllmu,,

lg+m

X (k) Y{k}
———>| Dynamic System | E—

A linear relationship could be found between runoff Y(k) in earlier time periods,
Y(k-1), Y(k-2), .... Y(k-1), and rainfall, X(k-1g), X(k-1g-1), .... X(k-lg-s+1), given by:

Y(k) = 81Y(k-1) + &HYK-2) .... + &Y (k-1) + 01X(k-1g) + 03X (k-1g-1) ...
+ wsX(k-1g-s+1)
or
3Bl Yk = Q[B].X(k-lg) (Al1.2)

where - &[B]
Q[B]

[1-8;B-&B2...-§Bn
[w] + @B ... + ©BS1]



62

In general, the roots of the characteristic equation 6[B], with B regarded as variable,

should lie outside the unit circle for stability. The transfer function model is H[B] =
o-1[B] . Q[B]. If we employ the transfer function given by Eqn(Al.2), then

substituting Y (k) = H[B] . X(k-1g) we obtain:

[1-8B-8B2..-8B.[h; +hy.B +h3.B2.... hypy1 . BM) . X(k-lg)
= [0+ @B ... + B8] . X(k-Ig) (Al.3)

On equating the coefficients of B, we obtain (for the case of s>r):

hy =

hy = 0 + 81h1

hs = @3 + d1hy + &y

hr = (Dr + Slhr.l + 62}11-.2 vese + 8rh.0
heyy = Oy + Sihe + Sobpg ... + Gy

hS = 0 + Blhs.] + 82hs-2 e F arhs-r

hsi1 = O1hs + O2hs 1 ... + Ochs 41
hm = Othmg + &by ...+ Sthpr
In summary
hp =
(Al.4a)
ir
h) = o+ X §.h for2<i<s
=1
. {i ifi<r
where ir = .
r ifi>r
r
hi = ¥ §.hy forstl<i<m {Al1.4b)

=1

In practice, values of r and s rarely need to exceed 2 or 3.
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Estimation of the ARMAX Model Order and Parameters Given the UH
Parameters

The order of the model 1,5 is initially arbitrarily chosen. The autoregressive parameters
'd’ are determined using Eqn(4b) where there are (m-s) equations to determine r number
of parameters. The parameters can be estimated using the least squares method. Once
the '6' parameters are estimated, the '®' parameters can be determined by direct
substitution in Eqn(4b). The order of the model 1,s is determined by the trial and error
approach, where the order is increased till the improvement in mean squares of error
(MSE) is insignificant.

Example:
The operational UH ordinates of a catchment are given below. Determine the most
suitable order (r,s) and parameters for an ARMAX model.

i(6hr) 1 21314 S |6} 7 8 |9 10 11 |12 113

hj.q 0.0 |1.9114.27]5.86(6.86| 5.52{4.82|4.31{3.84|2.72|2.16|1.70] 1.03

Ist Trial: Choose r=2, s=3.

h) = o
hy = o+ d1hy (Al.5a)
h3 = @3+ 8jhy + &ohy

hy = &1hs + Shp

hs = 3&jhs + &bz
. (A1.5b)

hiz = &1h11 + S2hyo

81 and &, are estimated from nine equations in Eqn(A1.5b) using the recursive least
squares method. The values are estimated to be 8; = 1.282 and &, = -0.382. Now these
values are substituted in Eqn(Al.5a) to determine s. The estimated values are @] =
191, 0 =1.82, w3=1.11, and MSE = 0.349. Fig. Ala indicates that the UH ordinates
corresponding to ARMAX [2,3] do not fit well in the peak region. So the model order
is increased.

2nd Trial: Choose =2, s=4.

The same procedure is repeated and the values of '’ and '@’ are estimated to be &) =
- 0.749, 8, =0.074, and w3 = 1.91, 0 =2.84, w3=2.52, w4 =2.16, and MSE = 0.080.
Fig. Alb indicates that the UH ordinates corresponding to ARMAX [2,4] tally
reasonably well with the operational UH ordinates. A further increase in the order
showed no improvement in the fit and this model was accepted as a good fit.



UH ordinates {m3/s/mm)

s () o . POMAX[23] (1.262,-.382,1.91.1.82.1.114)
MSE = 0.349

1 2 3 4 5 8 7 8 9 10 11 12 13
Time [x 6hrs]

Bl UH Mode! M ARMAX[2,3] model

UH ordinates [m3/s/mm)

I S S [P | ARMAX[24] (749,074.1.91,2.842.52.2)
( ) MSE = 0.080

[V~ T S . e

Time [x 8hrs]

Ml - occs Bl 2RMAX2,4] mecel

Figure Al: Comparison of actual UH ordinates and the UH ordinates derived from the
ARMAX model.
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APPENDIX 2
REVIEW OF RECURSIVE LINEAR ESTIMATION METHODS

We begin with a purely deterministic form of the recursive least squares for a linear
system with time invariant parameters. We then move on to the dynamic least squares,
where the parameters are considered to be variable with time. Finally, the discrete
linear optimal estimator, namely, the Discrete Kalman Filter, is considered.

1.  Recursive Linear Regression Analysis
Let us consider the problem of linear regression, in which the variable y,, is linearly

dependent on n other linearly independent variables, given by:

Vo = a].X] + @2.X2 ... + 3.Xp (A2.1.1)
where aj, j=1,2, .. n constant, but unknown parameters.

Let us suppose that the variables x; are known exactly, but y, is observed in the
presence of noise £ and there are k such noisy observations y;, i = 1,2,.. k and the noise
sequence is &;, 1= 1,2,.. k. The observations in general could be written as:

a1 .Xj1 +a.X2... +a,.Xp + &; i=1.2,.k (A2.1.2)

vi
or
Y = yT.a+E (A2.1.3)

where  Y=[yny2 .. ydT

X11%12+-X4n

X21X22---X2p

_xklxkz...xkn ]

E = (81, 82! bl EH)T
a = (ag, a3, ... ap)T

or
y1 = XiT -2+ g (A2.1.4)

where X'ir = [Xi1, Xi2, «-- Xin]
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Let us assume that the sequence of noise g;, 1= 1,2,.. k has the following statistical
properties:
(i) it has zero mean value, i.e. E{g; } =0, and variance 62;
(ii) it is sequentially uncorrelated (serial correlation is zero), i.e.
E{ei . g} = 62. §;js
1 ifi=j
where 8;: = ;

Y {0 ifi=j

(iil) & is independent of xjj; i.e. E{gj. xjj} =0.

The method of least squares can be used to estimate the parameters a = (aj, a3, ... ap)T
of the problem mentioned above so that J, as defined below, is minimum.

; [E Xij & -)ﬁ]z

J =
i=1  j=1
k 2
oo 1=73 [X . 2a-y]
i=1
or J=[xTa-Y]T[xTQ-Y]

The derivative of J with respect to elements in vector a should be zero for minirnum J:

1 k T k
Va® =2 2 [XX]- 2 [Kiy] = ¢aTa-xY = 0 (A215)
i=1 i=1

where Va(J) is the gradient with respect to every element of a. If the matrix [Xi X'ir ]

is non-singular, the solution of equations becomes:

ax = px. bk (A2.1.6)
k -k k
where  p= L3 XXT] 5 b= ¥ X (A2.1.7)
i=1 =1
.or pk = [xxTH 5 b = [XY] (A2.18)

- In order to develop a recursive algorithm for the solution of Eqn(A2.1.6), the estimate
of a after k-th instant 8y is given by a linear addition of &x.1 and a corrective term based
on the information yy and Xk received at k-th instant. From Eqns(A2.1.7) and (A2.1.8)

we obtain:
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-1 -1 T
Pp = P T Xk Xk (A2.1.9)
by = bk + Xk Yk (A2.1.10)

We can invert the matrices in Eqn(A2.1.9) to obtain an expression for pi(l in terms of

pi(I_I as follows (matrix inversion lemma):
T -1 T
Pk = Pkl - Pr-1 Xk (1 +X pi1 Xi) X Pkl (A2.1.1D)

Substituting (A2.1.9) and (A2.1.10) in Eqn{A2.1.11), we get:

a A T .
& = &1+ Ok (X} ax-1-y0 (A2.1.12)
where Gy = pr1 Xk(1+X] p1 X (A2.1.13)

So far, we have not used any of the assumptions made concerning the nature of the
noise sequence. Let us consider the statistical properties of the prediction error

& (=(& - 8).):
(i) mean value of &:
E{d-a} = E{[xx"FxE} = l0
(ii) the covariance matrix of a:
Var{a} = E{DoxTIH x EETYT {[xxT11})
Replacing E{E ET} by 62 I, we obtain:

Var{z} = o2[xxTI! = o2.px
Px = o%.px

Replacing pg by P—; in Eqns(A2.1.11), (A2.1.12) and (A2.1.13), we get:
(o]
Py = (I-Gg XI) Prg (A2.1.14)

where Gk = Piq Xk (02+X, Py X' (A2.1.15)
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Thus the precision of the parameters g is indicated by the covariance matrix Py at any

instant k.

2. Dynamic Least Squares Method
In the linear regression analysis, the parameters in the regression model are considered
time invariant and are given by:

akg = 8k-1
If this is not the case in reality, it is not wise to use this method. Let us assume that the
parameters vary according to the stochastic difference equation given by:

akx = ©®ax) + T wi (A2.2.1)
where ® = &k, k-1) transition matrix
I' = T(kk-1) coefficient matrix of noise
and w.x = vector consisting of independent random variables ~ N(0,Q),

ie. E{wk} = 0

E{wkw, } = Q.d;

where 8ij = 1lifi=j
0ifi=]

A simple example of such a model is the equation of random walk given by:
ax = akl + Wk (A2.2.2)
Let us consider a linear model given by:
T _
vk = X, -2+ & (A2.2.3)

where the unknown parameter varies from (k-1)-th instant to k-th instant according to
the stochastic difference equation, Eqn(A2.2.1). A step ahead prediction of a.:

akk1 = @ &g (A2.2.4)

From Eqns(A2.2.1) and (A2.2.4) error of prediction:

axk-1 a1 - ak

k-1 = Py - Pakr -Twk = Pag - Fw (A2.2.5)
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The covariance matrix Pys.-1:

]

E{fi1 G )
E{[® &1 - Twi] [P &1 - Twi]T}

Prs-1

Since w.x influences only ax, E{a.] - EE_} =0, therefore:
Puk1 = @ P ©T + TQIT (A2.2.6)

where Pyx1 = E{&-1 5{‘1-}
A step ahead prediction of a.x (8x/k-1) and Px (Pyk-1) is given by Eqns(A2.2.4) and
(A2.2.6). Making use of these equations of predictions of variable parameters, we

could modify the simple recursive least squares algorithm to sequentially estimate the
variable parameter a.x. Thus, in summary, we have the following equations:

Prediction:
agk1 = D &1

Pyx1 = @ Peg ©T + I'QIT

Correction:
r.y ~ T
& = 81 + G X awk-1-Yx)

Pk = (1-GeXy) Pul
where G = Pujer Xk (02 +X; Pue1 X

Note: In practice, it is difficult to obtain a model to describe the variation of parameters
given in Eqn(A2.2.1). The slowly varying parameters could be represented by the
equation of random walk given by Eqn(A2.2.2). Thus the equations of prediction
becomes:

akk1 = &1 and  Pgkgl = Per + Q

3. Discrete Linear Optimal Estimation Technique (Kalman Filter)

Although there are several methods to establish a linear optimal estimator, we will
consider only a simple approach. We shall seek to develop an estimator which is a
linear function of measurements. This estimator should minimise the covariance of
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errors existing between estimation and the real value of the state. Initially, Iet us
consider a discrete linear system given by:

Xitl = D1 Xk + Tke1 Wiet (A2.3.1)

The state X is observed by the measurement system given by:

Zx+y1 = HXgep + Visi (A2.3.2)

state variable
measurement
measurement error
system error
transition matrix
measurement matrix

coefficient matrix of system noise.

where

TS SN
nm W uumnman

i

D1
A step ahead prediction of the state at k-th instant is given by:

X1k = P Xk (A2.3.3)

The prediction of measurement is:

Zys1 =BX 11 (A2.3.4)

Prediction error of the state:

Xirt/k = Xier1 — Xk41/k (A2.3.5)

Substituting from Eqns(AZ2.3.1) and (A2.3.3) we get:
Kiearrk = et Xie = Xin) + Tesa Wies

or Xk = PuarXi + TiaaWieat (A2.3.6)
The covariance matrix Py.1 is given by:
Peik = E{an/kizﬂfk}
Assuming no correlation between Wi+ and Xk(i.c.E{kag _,_1} = 0), we obtain:
Pukg = © Py T+ T Q IT (A2.3.7)

On receipt of Zi+1, this new information could be used for modifying the prediction.

The deviation between the measurement and its prediction is:
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£ = Ziv1 - HXke1x

Since the estimation of state is a linear function of measurement, the corrected state can
be given by:

Ririkel = Xialk + Kirl @iel - H Xpa 1) (A2.3.8)

Where Kk+1 is a gain matrix and its choice is such that it minimizes the covariance of
error existing between estimation and the real value of the state variable Xy41:

Prstksr [E{ ik+1/k+1 XE+1/k+l 1.

Xi+1 - Xkel/k+l

Xk+1/k+1

Xierl - Xkt - Kkat @icrl - H Xk+1/K)

Xi+1/k+1

By replacing Zi+1 by (& + H Xyk41) we obtain:

Xk+1/k+1 = Xka1/k - Kkt H Xgg1k - Kkt (Ek+1)

or  Xk+1/k+1 (I-xke1 H) Xgp1x - Kia1 (Eks1)

Thus:
- =T
Prrin+1l = B{Xwrima Xppqne1 )

= E{(1 - ko1 H) a1k - Kol @e1)] [ - K191 H) Ko - Kiew1 @ee)]’)

Assuming no correlation between the state estimation error and measurement error (i.c.
E[Xk+1/k &+1] = 0) and the measurement error is serially independent, we can rewrite

the expression for the covariance of state estimation error as:
T
Prs1k+l = (- Kke1 H) Prarc T- K1 HY + Kia1 Rigqn (A2.3.9)

When Eqn(AZ2.3.8) is expanded, it gives:

Pri1a+l = Pirix - ¥kl HPrrik - Prark HT Kie
+ Kiat (H Ptk HT i1 + R K, (A23.10)

The matrix (H Py+1/k HY) + R in Eqn(A2.3.9) is symmetric, since Py4/k and R are
symmetric matrices. Thus it could be written as:
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T

(HPe1x HT +R) = Axe1 Ay,

(A2.3.11)

The last three terms in Eqn(A2.3.10) bave a form of quadratic matrix polynomial on
Kik+1. Now, assuming that there is a matrix By 1, such that:

T
Bk+1 A,y = PraxHT (A2.3.12)

eqn{A2.3.9) becomes:

T T
Prt1k+l = Prark + (ka1 Aked - Bia1) (Kika1 Aksl - Bra1)™ - Brar By

Supposing that the matrix Ag4) AE ol is positive definite, Py 1/k+1 1S minimum when
Ki+1 Ak+1 = Bk+i1. Thus substituting for By, in Eqn(A2.3.12), we obtain:

Kkel Aksl A, = ProixHT S (A23.13)

Thus the gain ki1 1S given by:

Kksl = Piaik HT (HPyypx HT +R)! (A2.3.14)

Replacing Ki+1 by its value in the last term of Eqn(A2.3.10), we obtain:

Prstke1 = (- %1 HD) Pryin (A2.3.15)
These expressions can be modified to take into account the deterministic inputs (Uk+1)
given by:

Xkelk = P+l Xk + Lk41 Uil + Tl Wil (A2.3.16)

where Ug+1 is the deterministic input
Q41 is the input matrix.

Thus the optimal linear estitnator commonly known as The Kalman Filter is given by
the following equations:

Prediction:

Xk+1/k Pry; Xk + Qa1 Ukst

OP 10T + TQIT

I

Pr+1/k



Correction (or filtering):
X1+l = Xigalk + Kkl (Gl - H X110

Pr+ik+1 = (I-¥x+1 HT) Prpa

where  Kxs1 = Pra1k HT (HPyyx HT +R)!
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APPENDIX 3
WORKED EXAMPLE

A lower order model [ARMAX(1,2,1)] is used to simulate runoff from rainfall data.
The model is given by:

gk = 81Qk-1 + ®1Rfkyg) + @2 Rf .1.5) + V(i)

or gk H;f . Xk + v(k)

where HE = [gk.1, Rftk-D), Rftk-2)]

Xk [81, o1, p]T
v(k) = measurement noise [~ N (O,R)]

The variation of parameters is represented by simple random walk:

3 ) Wy
0)1 = CD] + Ws
®32 k41 2 I W3 1k

or Xi+1 = Xk + WEK)
where W(k) ~ N(0,Q
ql 00

Q = |0q%0
00q°

The parameter values are simulated using generated independent random normal
variates Vn ~ N (0,1), where w; = \Iq_l . Vn. The measurement noise is simulated

likewise, where V = \Iﬁ . Vn. The initial values of ARMAX model parameters are
given by:

5, 0.62
o | = 542
W, 0 5.25

A numerical example of Recursive Algorithm (Kalman Filter):



Noise statistics:
R = 100.0
0.0001 0.0000 0.0000

Q = [0.0000 0.0100 0.0000
0.0000 0.0000 0.0100

State prediction:
Xik-1 = Xg-1/k-1

T T
Xen1 = Xeipg = [0.598,5.218,4.581]

H, = [327.0,30.0,210]

Error covariance matrix:
Pr-1/k-1

0.00099 -.00609 -.00634
—-.00609 0.16511 -.0525%
—-.00634 -.05259 0.22532

Oultput prediction:
T
k-1 = Hp - X1
Q-1 = 4483 5 g = 453
Innovation:

Vk = Qk - gkl = 47
Predicted error covariance maitrix:
Prk1 = Prax1 + Q

0.00109 -.00609 -.00634
—.00609 0.17511 -.05259
—.00634 —-.05259 0.23532

Prx-1 Hx = [0.04059,2.1575, 1.2908]T

[HY - Pror Hy +R| = 205.104



Predictor gain:
-1
Gx = Pyx-1 Hk [HE - Pysi-y Hy +R]

Gy = [0.000198, 0.01050, 0.00629]T

Correction:
Gk .vk = [0.001,0.049, 0.030]T

State estimation using new measurements:
Xk = Xwk1 + Gk vk

T _
Xp, = [0.599,5.268,4.610]

Error covariance matrix after new measurement:
T
Prx = [I -Gy Hk] Pyk-1

0.06475 0.00594 0.00416
Gi HE = |3.4335 0.315  0.2205
2.0568  0.1887 0.13209

0.93525 -.00594 —.00416
[1-GyH{| = |-34335 0685 -2205
-2.0568 -—.1887 0.86791

0.00108 -.00652 -—.00660
Pyx = |-.00652 0.15246 -.06614
—.00660 -.06616 -.22720
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