INVESTIGATION OF A
VARIABLE PROPORTIONAL
LOSS MODEL FOR USE IN
FLOOD ESTIMATION

L. Siriwardena
P. 1. Hill
R. G. Mein

Report 97/3
March 1997

@

COOPERATIVE RESEARCH CENTRE FOR

CATCHMENT HYDROLOGY




INVESTIGATION OF A VARIABLE
PROPORTIONAL LOSS MODEL FOR
USE IN FLOOD ESTIMATION

L. Siriwardena
P. 1. Hill
R. G. Mein

Report 97/3
March 1997

COOPERATIVE RESEARCH CENTRE FOR
CATCHMENT HYDROLOGY



Siriwardena, L. (Lionel), 1953-,
Investigation of a variable proportional loss model for use in flood estimation.

Bibliography.
ISBN 1 876006 19 6.

1. Flood forecasting - Mathematical models. 2. Runoff-Mathematical models. L
Mein, Russell G. II. Hill, Peter, 1970-. III. Cooperative Research Centre for
Catchment Hydrology. IV. Title. (Series: Report (Cooperative Research Centre
for Catchment Hydrology): 97/03).

551.488015118

Keywords

Flood Forecasting

Floods and Flooding
Rainfall/Runoff Relationship
Modelling (Hydrological)
Catchment Areas

Coefficient

© Cooperative Research Centre for Catchment Hydrology, 1997
ISSN 1039-7361



PREFACE

A major aim of the CRC Project “Improved Loss Modelling for Design Flood Estimation and
Flood Forecasting” was to reduce the uncertainties inherent in current procedures for
estimating runoff generation from storm rainfall. The establishment of a large integrated
database of rainfall and runoff observations was a key component of the project, since the
development and testing of new loss models relied heavily on observed catchment behaviour.

The work reported here deals with the investigation of a variable proportional loss model to
describe the change in runoff producing areas observed in catchments during storms. It also
examines the use of pre-storm baseflow as a practical and reliable indicator of the antecedent
wetness of a catchment. '

The research has produced a significant advance in the empirical knowledge of losses and
their role in design and real-time flood estimates. Parts of the work can already be used in the
early estimation of real time flood response, before updating procedures, using observed data.

Russell Mein
Leader, Flood Hydrology Program
CRC for Catchment Hydrology



SUMMARY

This report presents some of the outcomes from a major research project “Improved Loss
Modelling for Design Flood Estimation and Flood Forecasting” undertaken by the CRC for
Catchment Hydrology. It details the development and application of a variable proportional
loss (VPL) model, intended for use in real time flood forecasting and design flood estimation.
The method is based on the assumption that the size of the saturation areas of the catchment
increases as the rain progresses, resulting in an increased proportion of rainfall contributing to
runoff as the storm progresses.

The development of the VPL model was based on the analysis of storm events for 20
Victorian catchments. This led to development of a relationship for volumetric runoff
coefficient (event) as a function of pre-storm baseflow and storm rainfall. On a catchment
basis, this relationship can best be represented by a 4-parameter logistic function.

The relationship allows for determination of ‘initial loss’ and progressive runoff coefficients,
knowing the pre-storm baseflow. The estimated loss parameters were consistent and behaved
satisfactorily for the catchments analysed.

A single parameter loss function was developed to use on a regional basis after ascertaining
that the loss of accuracy caused in simplifying the relationship is not significant. The baseflow
index (the fraction of the total streamflow which is baseflow) was found to be very significant
in explaining the variability in the only parameter of this generalised loss function.

Suitability of the proposed VPL model for real-time flood forecasting was investigated for a
number of test catchments. The rainfall excess hyetographs determined from the VPL model
were routed using the calibrated RORB model; recorded and predicted hydrographs were
then compared. It was concluded that the proposed loss model can be adopted satisfactorily
in real-time flood forecasting within the context of uncertainties associated with the
procedure. The successful application lies primarily in the ability of the loss model to predict
runoff coefficients accurately.

For design flood estimation, further work is required before the variable proportional loss
model can be applied.
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1. INTRODUCTION

1.1 Purpose

This report documents the development and application of a ‘variable proportional loss
model’, intended for both real-time flood forecasting and design flood estimation. The
method is based on the assumption that the size of the saturation areas of the catchment
increases as the rain progresses, resulting in an increasing proportion of rainfall contributing
to runoff during the storm. In particular, it looks at the linking of proportional losses to the
indicators of initial catchment wetness such as pre-storm baseflow.

The work reported here covers part of the work for Project D1 of CRC for Catchment
Hydrology - “Improved Loss Modelling for Design Flood Estimation and Flood Forecasting”.
A CRC working document ‘Development and Testing of a Variable Proportional Loss
Model’ (Siriwardena et al., 1997) gives further details of the methods and data.

1.2 Background

The ‘initial loss/continuing loss’ and ‘initial loss/proportional loss’ models are currently
recommended for flood estimation and forecasting purposes in Australia. In the ‘initial
loss/continuing loss model’, no rainfall is assumed to occur until a given initial loss capacity is
satisfied, and the rainfall excess is the residual left after subtracting a constant rate of
continuing loss. In the ‘initial loss/proportional loss” model, losses are assumed to be a
constant factor of rainfall, once initial loss is satisfied. Both models are gross approximations
of the processes which contribute to the total loss from rainfall.

This study is an attempt to incorporate the concept of saturation areas (source areas) in to
loss modelling, as suggested in the studies by NERC (1975), Mein and O’Loughlin (1991)
and Mag and Mein (1994). NERC (1975) described a variable proportional loss model,
derived on a regional basis, in which the proportional runoff factor is defined as a function of
the antecedent wetness index, storm rainfall, and catchment characteristics such as an index of
soil properties and the proportion of catchment urbanised. Mein and O’Loughlin (1991)
postulated and developed a relationship for a proportional runoff factor, on a catchment basis,
as a function of pre-storm baseflow and storm rainfall, for the estimation of progressive losses
in real-time flood forecasting. In Mag and Mein (1994), this latter approach was developed
further and demonstrated on a test catchment.

The Mein and O’Loughlin (1991) approach can be used to develop a relationship for
volumetric runoff coefficient as a function of pre-storm baseflow and rainfall depth, on 2
catchment basis. This method gives progressively higher runoff factors as the storm
progresses, hence, is considered to be more representative of physical processes than the
previously mentioned simple loss models. However, the method is not appropriate when
modelling events with insignificantly small pre-storm baseflow.

1.3 Guide to the Report

The aim of this study was to develop relationships (‘saturation curves’) for volumetric runoff
coefficients as a function of pre-storm baseflow (or alternative soil moisture index) and storm
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rainfall, for a number of catchments. The type of catchments for which the proposed loss
model is suitable was investigated. Generalised prediction equations for catchment losses
were developed as a function of antecedent conditions and catchment characteristics based on
pooled data. For a number of test catchments, the rainfall excess determined from the
proposed loss model was routed using the ‘RORB’ runoff routing model (Laurenson and
Mein, 1995) and compared with the observed hydrographs in order to assess the applicability
of the proposed model for flood forecasting.

This report begins with a review of previous work related to the study. Chapter 3 then
describes the catchments and data used in this study and the methodology adopted in the
development of relationships (‘saturation curves’) for volumetric runoff coefficient. The
results for individual catchments are presented in Chapter 4 and the relative merits of the
methodology are discussed. Chapter 5 describes a regional study of the derivation of
generalised prediction equations for loss parameters as a function of antecedent conditions
and catchment characteristics, based on pooled data.

The next chapters deal with the practical applications of the proposed loss model. In Chapter
6, the applicability of the proposed loss model for real-time flood forecasting is examined by
routing the rainfall excess determined from the proposed loss model using the ‘RORB’ model
and comparing the modelled and recorded hydrographs. A preliminary evaluation of the
suitability of the proposed loss model for design application is presented in Chapter 7. The
summary of the results and conclusions drawn from the study are presented in Chapter 8.



2. PREVIOUS WORK ON EMPIRICAL ANALYSIS OF LOSSES

2.1 Preamble

The difference between storm rainfall and the volume of flood runoff (ie. ‘loss’) has a major
influence on the magnitude and shape of the resultant flood hydrograph. Here, loss for an
event is defined as the amount of precipitation that does not appear as direct runoff; it
includes moisture intercepted by vegetation, percolated into soil or retained by surface
storage. As these loss components depend on topography, soils, vegetation and climate, the
rainfall losses exhibit both temporal and spatial variability during an event.

Nandakumar et. al (1995) present a review of approaches used to estimate the amount of
rainfall which becomes runoff during storm events. Their concern was with loss estimation for
use in both real-time flood forecasting and calculation of design floods used to size hydraulic
structures. The purpose of the review was to highlight the deficiencies in the current state-of-
art and to indicate the most promising areas of research for CRC Project D1 “Improved Loss
Modelling for Design Flood Estimation and Flood Forecasting”. The loss models they
identified which have direct relevance to this study are briefly discussed below.

2.2 Empirical Models for Determining Losses

Estimation of Initial Loss

The ‘initial loss/continuing loss’ and ‘initial loss/proportional loss’ models have been widely
adopted for flood estimation and forecasting purposes. As initial loss is related to the
antecedent catchment wetness, various empirical models have been proposed to predict initial
loss from different soil moisture indices. The most common moisture index is the antecedent
precipitation index (API), defined as :

API) =  Py+PiK+PR? #.ooee. +P, K" 2.1)

a recession factor less than unity
daily rainfall n days antecedent to the storm event

where K
P

n

A number of investigations have found that the recession parameter, K, needs to be varied
seasonally to allow for the seasonal variation of evapotranspiration; K is expected to be high
in winter and low in summer. Cordery (1970) also established that the recession constant (K)
used in API computation can be functionally related to monthly temperature, monthly
evaporation or even to an arbitrary sine curve function. Yang and Laurenson (1985) used
both API and the beginning discharge of a storm (baseflow) for derivation of empirical
relationships for initial loss.

Cordery (1970), using rainfall and runoff records for 14 catchments (catchment areas ranging
from 0.06 - 250 km?) in NSW, developed an exponential relationship to predict initial loss in
the following form :

IL = IL, (NA? (2.2)
where II. = initial loss
N = aconstant less than unity



For each catchment, he derived optimised monthly K values and established the best form of
functional relationship giving optimum K values. This was achieved by optimising the

" parameters of the functional relationship (used to define the monthly K values) to obtain the
highest correlation coefficient for Equation 2.2. The average values of K obtained for
different catchments ranged from 0.85 to 0.96.

Mein et al. (1995), based on the analysis of nine Victorian catchments, found that pre-storm
baseflow is the slightly better and more consistent indicator (in comparison to API) of the
antecedent catchment wetness, with respect to derivation of empirical relationships for initial
loss.

Estimates of Total Loss and Its Distribution

The Flood Studies Report (NERC, 1975) recommends a technique for distributing losses; it
relies on prior knowledge of the total losses during the storm, estimated using a prediction
equation. Analysis of UK data led to the recommendation in the Flood Studies Report
(NERC, 1975) to use Equation 2.3 for predicting total percentage runoff in a storm.

PR =  0.22(CWI-125) + 0.1(P-10) + SPR (2.3)
in which PR = percentage of rainfall which becomes direct runoff
CWI = acatchment wetness index (defined in Equation 2.5 below)
P = storm rainfall (min)
SPR = standard percentage runoff for the catchment, determined from an

index of soil properties and the proportion of the catchment
urbanised.

Equation 2.3 is not a representation of physical processes, although it does consider that
losses are distributed throughout the storm and dependent on the changing state of the
catchment (NERC, 1975).

NERC (1975) proposed a short term (5 day) antecedent precipitation index (APIs) given by:
APIs = 0.5"[Ps;+ 0.5 Piz+ (0.5 Pss+ (0.5) Pag+ (0.5 Pus] (2.4)

This API is used in conjunction with the soil moisture deficit, estimated from the rainfall and
actual evaporation, to calculate an antecedent wetness index (CWI) given by:

CWI = 125 +APIs- SMD (2.5)

where SMD is the soil moisture deficit.

The total storm loss is estimated in advance from Equation 2.3 and then distributed
throughout the duration of the storm. The Flood Studies Report (FSR) gives a technique for
distributton which varies the percentage of mainfall lost in each time period, in inverse
proportion to a measure of catchment wetness applying at the start of that time period. The
measure of catchment wetness is progressively updated following each rainfall increment.

Oddie et al. (1982) applied the FSR method with the unit hydrograph flood model to obtain
flood hydrographs for two catchments in Victoria, and found good agreement with observed
and simulated flows. When total storm losses were estimated using Equation 2.3, however,
CWI failed to indicate sufficient variation with real changes in catchment wetness. This was
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attributed to the fact that the antecedent condition plays a more dominant role in Australian
rainfall-runoff processes than in the UK.

Approaches Based on Source Area

Mein and O’Loughlin (1991) proposed a methodology for real-time flood forecasting which
makes use of the size and location of the saturated area on a catchment (ie. the source areas)
to determine the proportion of the rainfall that becomes runoff on a catchment during flood
events. During the storm, these saturated areas increase in size, as a function of cumulative
rainfall. They proposed the use of the TOPOG model to indicate the extent and position of
saturated areas on a catchment for any level of rainfall excess. The catchment behaviour,
predicted by the TOPOG model, can be represented by a family of characteristic ‘S’ curves,
relating the present saturated area to the pre-storm baseflow and progressive rainfall (as
shown later in Section 3.2).

In an update of the work presented by Mein and O’Loughlin (1991), Mag and Mein (1994)
investigated this particular relationship on the Burra Creek catchment, located near Canberra
by plotting the relationship between volumetric runoff coefficient (equal to surface runoff
divided by storm rainfall), pre-storm baseflow and rainfall. With 100 percent runoff assumed
from the saturated areas, the percent saturated area can be taken as equal to the volumetric
runoff coefficient. Their work showed that the shape of the ‘S’ curves obtained using
volumetric runoff coefficient is generally consistent with that produced by TOPOG for the
proportion of saturated area as a function of pre-storm baseflow and subsequent rainfall.

Approaches Based on Empirical Relationships

Drobot and Iorgulescu (1991) illustrated how a simplified version of the SSARR model
(Rockwood, 1968) is used to compute storm rainfall excess; it is based on a non-linear
relationship between the runoff coefficient C, the soil moisture index U and the average
rainfall intensity 7 over a catchment. The analysis of empirically obtained runoff coefficient
curves for given rainfall intensities, I, at selected durations, indicated a relationship of the
logistic type between the variables C, U and I; hence, the following expression was proposed
. for the runoff coefficient C:

c,n k)
1+a(l).exp[-b(1).U]

where K(I) represents the ceiling value of the curve for intensity 7, and a(/) and b(I) are
parameters for the same curve. The expression for the ceiling value K(J) can be obtained from
physical considerations. This equation is an example of the type based on assumed
relationships between loss, and the factors which influence it.

(2.6)

Summary

The above examples illustrate several ways to predict losses from event rainfall. In the
following chapters, the method based on saturation curves is developed further, since this
seems to have the greatest potential for both real-time and design applications.



3. METHODOLOGY USED TO DERIVE EVENT LOSSES

3.1 Catchments and Data Used

3.1.1 Catchments Selected for the Study

Eight Victorian catchments were used in a preliminary study of the variable proportional loss
model (Siriwardena and Mein, 1995 & 1996); twelve additional catchments were included for
this study to better represent different climatological and topographical regimes. The drainage
area of the selected catchments ranged from 32 to 609 km?, (including three catchments of
drainage area greater than 300 km?), so as to test the methodology for moderately large
catchments. The mean annual rainfall of the selected catchments ranges from 550 to 1900
mm. The list of catchments selected for this study is given in Table 3.1; Figure 3.1 shows their
locations. This figure shows a reasonably good coverage of Victoria with the exception of the
northern and western parts of the State; the latter is due to the non-availability of suitable
gauged catchments in this region.

The selected catchments are part of a database of 67 Victorian catchments assembled by Hill
(1994). The primary concerm in the selection for this study was the availability of concurrent
streamflow and rainfall pluviographic data (at least 15 years). There was also a need for
adequate daily rainfall data, depending on the size of the catchment and nature of rainfall
regime. An attempt was made to select catchments of different sizes in different rainfall and
topographical regimes.

Table 3.1 : Study catchments

Gauging |Catchment| Annual

Catchment Station Area Rainfail

(km?) | (mm)
Aire River @ Wyelangta 235219 89.8 1900
Avon River @ Beazley's Bridge 415224 259 565
Axe Creek @ Longlea 406214 234 625
Boggy Creek @ Angleside 403226 108 1090
Cobbannah Creek @ near Bairnsdale 224209 106 840
Goodman Creek @ above Lerderderg tunnel 231219 32.3 800
Holland Creck @ Kelfeera 404207 451 920
La Trobe River @ Noojee 226222 62.2 1480
Lerderderg River @ w's Goodman Creek Jn. 231211 234 985
Lerderderg River @ Sardine Ck. 231213 153 1020
Moe River @ Darnum 226209 214 1050
Seven Creeks @ Euroa Township 405237 332 925
Snobs Creek @ Snobs Ck. Hatchery 405257 50.7 1650
Spring Creek @ Fawcett 405261 62.6 750
Sugarloaf Creek @ Ash Bridge 405240 609 710
Tallagatta Creek @ McCallums 401220 464 1000
Tarwin River East Branch @ Mirboo 227228 44.3 1140
Wanalta Creek @ Wanalta 405229 108 480
‘Warrambine Creck @ Warrambine 233223 57.2 670
Wattle Creek @ Navarre 415238 141 555
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Figure 3.1 : Location of study catchments

3.1.2 Selection of Events for Modelling

The selection of events for each catchment was made from the pluviograph, streamflow, and
rainfall data stored in the HYDSYS data archiving system. An emphasis was made to include
storm events of a range of magnitudes representing a wide range of antecedent wetness
conditions. To achieve this, the following approach was used :

1.

Select all events having flood peaks above a certain threshold value, such that the number
of events is approximately equal to S times the number of years of data.

Select a representative rainfall station for the catchment (eg. centrally located and having
continuous data) and extract largest storm events for 24 and 48 hour durations, such that
the number of events is equal to approximately 5 times the years of data.

Select all storm events in (2) which produce any runoff. Note that some events are
coincidental with those in (1). '

Screen the selected events, and discard any unsuitable events for loss modelling (timing
errors, accurnulated rainfall, multiple peaked hydrographs, zero baseflow events etc).

Arbitrarily add events to more fully represent extremely wet and dry conditions by
inspecting the streamflow time series plots on log scale.

This strategy ensured the inclusion of events that produced the largest flood events and the
largest storm events that produced significant runoff. For the 20 catchments analysed, 25 to



80 events were selected, depending on the length of the pluviograph record and availability of
suitable events for modelling.

3.2 Procedure Adopted in Development of Saturation Curves

3.2.1 Separation of Baseflow

Lyne and Hollick (1979) introduced a recursive digital filter technique to separate the
streamflow hydrograph into quick and slow response components, representing surface runoff
and baseflow respectively. Although the separation procedure does not account for
differences in physical processes, the method provides a quick, convenient and consistent
methodology for separation of baseflow provided that sensible model parameters (filter
factor, number of passes and time interval) are chosen.

The application of this technique has been discussed by O’Loughlin et al. (1982) and Nathan
and McMahon (1990). Using daily data, Nathan and McMahon (1990) compared the
performance of a master recession curve technique, the smoothed minima technique
developed by Institute of Hydrology (1980), and the recursive digital filter technique (Lyne
and Hollick 1979} with different filter parameters for five catchments (4-210 km?). They
concluded that the digital filter technique with a filter factor 0.925 and three passes (two
forward and one reverse) would give the optimum results compared to the other two
techniques. O’Loughlin et al. (1982) used the same parameters with a 1 hour time interval,
Mag and Mein (1994) showed that results obtained from the digital filtering technique with
these parameters, and those obtained from ‘manual’ subtraction of baseflow, were not
significantly different.

The HYBASE sub-program in the HYDSYS data archiving system uses a digital filter
technique for baseflow separation. In this study, continuous baseflow separation for all
streamflow records was carried out using HYBASE, with default parameters of filter factor
of 0.925, 3 passes (representing three forward and three reverse passes) and a 60 minutes
time step.

3.2.2 Antecedent Wetness Index Adopted in the Study

During a pilot study, Mein et al. (1994) found that, for a set of eleven catchments, pre-storm
baseflow is the better and more consistent indicator of antecedent wetness than the
antecedent precipitation index (AP]) for the estimation of initial loss. For API, uncertainties in
the value of the adopted recession parameter (K) significantly decrease the reliability of
estimated API values. Siriwardena et al. (1997) also found that the pre-storm baseflow is the
better indicator than the API for development of saturation curves for Spring Creek (405261)
catchment. Based on above work, the pre-storm baseflow (expressed in mm/day for
comparison for different catchments) was adopted in this study.

Pre-storm baseflow can be considered equal to the observed pre-storm streamflow if the
antecedent period has been dry. In the case where surface runoff from a previous event is still
occurring, this will need to be subtracted from the observed streamfiow to obtain the
baseflow component. For the events analysed in this study, pre-storm baseflow was found to
be equal or nearly equal to the observed pre-storm streamflow. This allows direct use of
observed pre-storm streamflow in deriving losses.



3.2.3 Fitting Saturation Curves

For the selected storm events, the Thiessen weighted storm rainfall was estimated from the
pluviograph and daily rainfall stations located in and around the catchment. Volumetric runoff
coefficients (equal to the surface runoff divided by storm rainfall) were plotted against the
observed pre-storm baseflow on a semi-log plot (ie. baseflow in log scale). If 100 percent
runoff is assumed from the saturated areas, the percent saturated area can be assumed equal
to the volumetric runoff coefficient. Each data point on the graph was labelled with the
corresponding storm rainfall for that event. If any trend exists, curves corresponding to
different levels of storm rainfall can be subjectively drawn (Mein and O’Loughlin, 1991).
However, when the number of data points are large, and if there is a considerable ‘noise’ in
the distribution of data points, it is preferable to fit 2 mathematical function.

Siriwardena et al. (1997) examined three different functions and concluded that a logistic
function of the form of Equation 3.1 was preferred.

1
1/d +a. BF® RAIN®

r.oe.c.

(1-d)+ (3.1)

| where BF = baseflow in mm/day
RAIN = stormrainfall in mm
a, b, ¢, d are coefficients determined by regression.

The advantage of the logistic functions given in Equations 3.1 is that runoff coefficient
reaches an upper bound of 1.0 and produces the postulated ‘S’ shape. If the optimised
parameter ‘d’ is greater than 1.0, then the lower bound of Equation 3.1 becomes a negative
value. In this case, for any pre-storm baseflow (BF), when r.o.c. becomes zero, Equation 3.1
gives a finite positive value for RAIN, which is ‘initial loss’. Thus, Equation 3.1 provides
adequate flexibility for the modelling of initial loss.

3.2.4 Interpretation of the Fitted Curves

Once the curves are plotted for any level of pre-storm baseflow, the corresponding initial loss
and runoff coefficient can be estimated from the vertical line which cuts the curves of storm
rainfall (Figure 3.2). The corresponding volumetric runoff coefficients reflect average runoff
coefficients for the corresponding storm depth, and therefore need some manipulation to
derive the variation of loss rate through a storm.

The value of the interpolated storm rainfall curve which produces zero runoff at the particular
pre-storm baseflow level may be taken as initial loss. For the purpose of using the fitted
curves as a variable proportional loss model, the runoff coefficients at incremental storm
rainfall depths need to be calculated. For example, the runoff coefficient for the incremental
rainfall from 40 to 60 mm (r.0.c.40.60) may be calculated as:

60 x Tsn -40x Ty
(60 ~40)

where rg and r;o are the volumetric runoff coefficients for total rainfall of 60 and 40 mm
respectively (see Figure 3.2).

[.0.C.40-60 = (3.2)
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Figure. 3.2 : Estimation of loss parameters (after Mein and O’Loughlin, 1991)
Knowing the fitted mathematical function, incremental runoff coefficients at a range of pre-

storm baseflow levels can be easily tabulated. The values of calculated incremental runoff
coefficients would be expected to increase gradually as the storm progresses.
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4. RESULTS OBTAINED WITH THE VARIABLE PROPORTIONAL
LOSS MODEL

4.1 Development of Saturation Curves for Individual Catchments

In the development of saturation curves for a catchment, the volumetric runoff coefficient is
defined as a function of pre-storm baseflow and total storm rainfall. As the pre-storm
baseflow is representative of antecedent catchment wetness, the volumetric runoff coefficient
is expected to increase with the pre-storm baseflow. Similarly, the larger the storm event, the
larger the area that contributes to surface runoff; hence, higher volumetric runoff coefficients.
The fitted mathematical relationship for runoff coefficient can be graphically presented as a
family of curves for a range of storm rainfall as shown in Figure 3.2.

Relationships for runoff coefficient were developed for each catchment using a logistic type
of function (Equation 3.1). During the fitting process for some of the catchments, a few data
points which did not appear to fit with the trend of the remaining data were considered as
‘outliers’ and eliminated (up to a maximum of 3 events). A plot of volumetric runoff
coefficient against pre-storm baseflow (in log-scale), with data points labelled with
corresponding storm rainfall for the Tarwin River catchment is given in Figure 4.1. The
saturation curves fitted by the logistic type function (Equation 3.1) for an appropriate range
of storm rainfall are also shown in this figure. Similar plots for other catchments are given in
Siriwardena et al. (1997). If the pre-storm baseflow is known, these relationships can be used
to estimate the volumetric runoff coefficient for a given storm rainfall depth, and provide the
basis for estimation of progressive incremental runoff factors. The volumetric runoff
coefficient, pre-storm baseflow and storm rainfall for the selected events used for calibration
of curves for each catchment are also given in Siriwardena et al. (1997).
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Figure 4.1 : Fitted saturation curves for Tarwin River East at Mirboo
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4.2 Evaluation of Results for Different Catchments

Logistic type relationships (Equation 3.1) were derived for all catchments except for the La
Trobe River for which no satisfactory relation was found to exist. It should be noted that, for
catchments which experience cease-to-flow conditions for a major period of time (eg. Avon,
Wanalta, Wattle), only the non-zero events could be used in the analysis. The optimised
regression parameters, the coefficient of determination (R?) and the standard error of estimate
(SEE) of the fitted relationships are given in Table 4.1.

The regression coefficient d is directly related to the ‘initial loss’. It was found that d is either
1.0, or slightly greater than 1.0, for many catchments, and greater than 1.10 for only 3 out of
19 catchments tested. This indicates that for many catchments, ‘initial loss’ is small. The
Lerderderg River (@ Sardine Ck.) is an exception, with a high value of 4 (2.14).

As it can be seen from Table 4.1, the coefficient of determination (R*) varies from 0.05 to
0.91 for the test catchments, representing varying levels of suitability for the methodology
adopted. Satisfactory results were obtained for a majority of catchments having R? values
greater than 0.70 (15 out of 19 catchments). Of these, 8 catchments had R* values greater
than 0.85.

The hydrologic behaviour of the La Trobe catchment was found to be different from the rest
of the catchments; runoff coefficients remained very low for all events. The pre-storm
baseflow of this catchment was always high; its small range in value precludes the fitting of
the curves. A simpler loss model, such as an average runoff coefficient for all ranges of pre-
storm baseflow, would be adequate for this type of catchment.

The ‘noise’ in the processed data used for Snobs Creek (R* = 0.39) was so high that the
saturation curves for different storm rainfall were not significantly different Wanalta Creek,
Warrambine Creek and Aire River were not satisfactorily modelled, as the R? of the fitted
reiationships falls within the range of 0.40 to 0.60.

The standard error of estimate (SEE) is a good indicator of the accuracy of the predictor
variable. Table 4.1 shows that the SEE of the runoff coefficients derived from the fitted
relationship varied from 0.017 to 0.108 for the catchments tested. It might be noted that there
is no direct relationship between the R? and SEE; for example, the R? of the fitted relationship
for Snobs Creek was only 0.39, but the SEE of the predicted runoff coefficient was low
(0.033). This is because the hydrologic behaviour of the catchment is such that the runoff
coefficients of the events used in calibration were less than 0.21. On the other hand, the fitted
relationship for Cobbannah Creek can be considered as good (R? = 0.80), but the SEE of the
predicted runoff coefficient was high (0.11), as the events used in calibration had a range of
runoff coefficients extending up to 0.75.

The SEE expressed as a percentage of the mean runoff coefficient of the events would be
more useful. Table 4.1 shows that SEE as a percentage of the mean ranges from 26 to 49
percent. It should be noted, however, that selection of many events of low runoff tends to
lower the computed ‘mean’ for many catchments. As a consequence, the computed SEE
expressed as a percentage of the mean is higher.
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Table 4.1 : Regression parameters and performance indices for the fitted logistic function (Equation 3.1)

* Set to 1.0 (optimised value being slightly less than 1.00)

Regression parameters R? Standard Error
Catchment Station for logistic function asa %
Code a b c d of mean
1 |Aire River @ Wyelangta 235219 586 -0.73 -1.06 1.00* 0.58 0.089 49%
2 {Avon River @ Beazley's Bridge 415224 5.64 -0.32 -0.69 1.12 0.77 0.075 30% |
3 |Axe Creek @ Longlea 406214 21.9 -0.73 -0.86 1.00* 0.88 0.045 28%
4 |Boggy Creck @ Angleside 403226 134 -0.71 -0.73 1.01 0.87 0.030 32% I
5 |Cobbannah Ck. @ near Bairnsdale 224209 334 -0.61 -1.54 1.04 0.80 0.105 36% I
6 |Goodman Ck. @above Eerderderg tunnel 231219 517 -0.62 -1.71 1.00* 0.75 0.066 42% |
7 |Holland Creek @ Kelfeera 404207 86.0 -0.74 -0.92 1.02 0.91 0.037 30%
8 |La Trobe River @ Noojee ne2| - - - - 005 | 0026 | 38% |
9 |Lerderderg R. @ ws Goodman Ck. Jn. 231211 1089 -0.48 -1.64 1.03 0.88 0.054 40% I
10 |Lerderderg River @ Sardine Ck. 231213 1.27 -0.22 -0.51 2.14 0.71 0.100 38% |
11 [Moe River @ Darnum 226209 11.6 -0.60 -0.44 1.06 0.83 0.041 28%
12 |Seven Ck. @ Euroa Township 405237 104 -0.96 -0.90 1.00* 0.90 0.035 29% I
13 |Snobs Creek @ Snobs Ck. Hatchery 405257 24.1 -0.44 -0.14 1.00* 0.39 0.033 41% I
§ 14 [Spring Creek @ Fawcett 405261 257 | -0864% -1.70 | 100* 0.79 | 0.085 38%
15 |Sugarloaf Creck @ Ash Bridge 405240 16.8 -0.74 -0.80 | 1.02 0.91 0.046 26%
16 |Tallagatta Ck. @ McCallums 401220 209 -0.95 -0.86 1.00* 0.88 0.017 36%
17 {Tarwin R. East Branch @ Mirboo 227228 93.4 -0.77 -1.07 1.04 0.87 0.061 28%
18 |Wanalta Creek @ Wanalta 405229 37.9 -0.29 -1.06 | 100t | 045 0.083 34%
19 {Warrambine Ck. @ Warrambine 233223 | 465| -022| -072] 132 042 | 0.108 | 371%
20 |Wattle Creek @ Navarre 415238 21.9 -0.42 -0.89 1.01 0.68 | 0.068 40%




The availability of data for large rainfall events plays a dominant role on the shape and
accuracy of the fitted curves at the high end. In general, the saturation curves derived for
catchments in low rainfall areas are only reliable up to a moderate event rainfall (eg. 100 mm)
due to the lack of points.

A direct comparison of the predicted and observed runoff coefficients for the Tarwin River is
shown in Figure 4.2. Such plots are useful in assessing the accuracy of the prediction
equation as well as observing any trends and biases in the distribution. Similar plots for other
catchments are given in Siriwardena et al. (1997).
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Figure 4.2 : Comparison of actual and predicted runoff coefficient for Tarwin River

Table 4.2 summarises the accuracy of the predicted runoff coefficients for all streams. This
table shows the percentage of the predicted values that are within 20 percent and 50 percent
of the calculated runoff coefficients. The table also shows the percentage of the predicted
values those are within  0.05 and % 0.10 of the calculated runoff coefficients.

The percentage error may not be a good indicator, especially for lower ranges of runoff
coefficients; and therefore, the percentage of predicted runoff coefficients being within £0.05
could be considered as an improved performance measure for the loss model. Using this
measure, the Seven Creeks, Boggy Creek, Tallagatta Creek and Holland Creek produced the
best results, with more than 85% of the predicted values being within 10.05. The R? of the
fitted relationship for these catchments is also more than 0.85. Cobbannah Creek, Lerderderg
River (@ Sardine Ck.) and Warrambine Creek are the worst representatives, with less than
50% of the predicted values being within 10.05.

Overall, the proposed variable proportional loss model based on saturation curves could be
satisfactorily applied for more than 75% of the catchments analysed in this study. However, it
was also shown that the methodology is not suitable for certain type of catchments, as
discussed in Chapter 5.
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Table 4.2 : Accuracy of predicted runoff coefficients

Percentage of predicted runoff coefficient

Catchment R? being within:

20 % 50 % +0.05 +0.10
Aire River @ Wyelangta (235219) 0.58 45 % 80 % 62 % 87 %
Avon River @ Beazley's Bridge (415224) 0.77 70 % 88 % 61 % 85 %
Axe Creek @ Longlea (406214) 0.88 51% 76 % 77 % 99 9%
Boggy Creek @ Angleside (403226) 0.87 38% 75 % 92 % 100 %
Cobbannah Ck. @ Bairnsdale (224209) 0.80 47 % 70 % 41 % 76 %
Goodman Ck. @ v/s Lerder. tunnel (231219) 0.75 29% 68 % 62 % 94 %
Holland Creek @ Kelfeera (404207) 0.91 4% M % 86 % 100 %
La Trobe River @ Noojee (226222) 0.05 - - - -
Lerderderg R. @ w/s Goodman Ck, (231211) 0.88 41 % 59 % 69 % 100 %
Lerderderg River @ Sardine Ck. (231213) 0.71 45 % 12 % 31 % 79 %
Moe River @ Damum (226209) 0.83 49 % T % T % 100 %

Seven Creeks @ Euroa Township (405237) 0.90 55 % 95 % 87 % 97 %
Snobs Ck. @ Snobs Ck. Hatchery (405257) 0.39 - - - -

Spring Creek @ Fawcett (405261) 0.79 30 % 6l % 50 % 80 %
Sugarloaf Creek @ Ash Bridge (405240) 0.91 42 % 71 % 78 % 97 % .
Tallagatta Creek @ McCallums (401220) 0.88 51% 81 % 99 % 100 %
Tarwin R. East Branch @ Mirboo (227228) 0.87 59 %. 70 % 65 % 94 %
Wanalta Creck @ Wanalta (405229) 0.45 56 % 86 % 50 % 81 %
Warrambine Creck @ Warrambine (233223) 0.42 45 % 82 % 36 % 73 %
Wattle Creek @ Navarre {(415238) 0.68 43 % 72 % 54 % 89 %

4.3 Application of the Variable Proportional Loss Model

To apply the variable proportional loss model to an event, incremental ranoff coefficients at
progressive rainfall increments need to be calculated from the derived relationship for storm
average runoff coefficients, as explained in Section 3.2.4. The incremental runoff coefficients
calculated in this way are given in Siriwardena et al. (1997) for all catchments.

An example plot of progressively calculated incremental runoff coefficients (at 5 mm intervals)
for Tarwin River is shown in Figure 4.3.

The incremental runoff coefficient is expected to increase gradually and approach a value of
1.0 as the storm rainfall increases (Figure 4.3). Although the average storm runoff coefficient
is constrained to be less than 1.0 by the type of function used in the fitting procedure, it does
not guarantee that the incremental runoff coefficients are also constrained. As a consequence,
for a few catchments it was found that the incremental runoff coefficients asymptotically
approach a value slightly greater than 1.0, especially at higher pre-storm baseflows. For
practical purposes, truncating these values to 1.0 would not make a significant difference.

It is important 1o note that the ‘initial loss’ estimated from the proposed loss model is not
comparable to the initial loss attributed to conventional loss models. The latter are
conceptually lumped models, having an initial loss followed by a constant proportional loss or
continuing loss rate. The proposed variable proportional loss model simulates the concept of
saturation areas, having a progressively increased runoff coefficient to model the contribution
from the increasing ‘saturation areas’ as the storm progresses. This is considered to be more
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representative of the physical processes than conventional loss models. In this model, the
rainfall up to the commencement of runoff (zero runoff coefficient) can be regarded as ‘initial
loss® but it is small in comparison to the initial loss for the conventional loss models.
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Figure 4.3 : Progressive (incremental) runoff coefficients for Tarwin River for
different pre-storm baseflow levels

The application of the variable proportional loss model to compute rainfall excess is
illustrated in Figure 4.4. In this example, the rainfall excess is calculated from the progressive
runoff coefficient, which increases from zero to 0.56 (equivalent to an average storm runoff
coefficient of 0.25). A deficiency in this procedure is the inability to account for the changes
in the catchment wetness (and in turn, progressive runoff coefficients) during the rainless
periods within a storm.
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Figure 4.4 : Application of proposed loss model to storm events: Spring Creek (20/09/1976)
(note the increase in proportional runoff coefficient as the storm progresses)
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The following procedure can be used to convert a storm hyetograph to a rainfall excess

hyetograph:

(i) Calculate the cumulative storm rainfall up to the end of each time interval;

(i) Calculate the average storm runoff coefficients corresponding to the cumulative storm

 rainfall at end of each time interval using the fitted relationship (Equation 3.1) for known
pre-storm baseflow;

(iii) Multiply the average runoff coefficients in step (ii) by the cumulative storm rainfall in
step (i) to obtain the cumulative excess rainfall at the end of each time interval;

(iv) Calculate the difference between rainfall excess totals at subsequent time intervals to
determine the excess rainfall hyetograph.

The above procedure avoids the need for direct computation of incremental runoff
coefficients, and provides a convenient method to determine the rainfall excess hyetograph. It
is important however to check that the incremental runoff coefficients are sensible (ie. values
not exceeding 1.0) before applying the procedure.

4.4 Overview of the Adopted Procedure for Loss Modelling

4.4.1 Factors Affecting the Fitted Relationships

The reliability of the fitted relationship depends upon the accuracy of the derived event
parameters of the largest rainfall events used for calibration. As only a few such rainfall
events are available for the calibration of the curves, the data points corresponding to
individual large rainfall events play a dominant role on the shape and accuracy of the curves.
For the development of consistent curves, a uniform distribution of data points covering a
range of rainfall is desirable. It was often observed that the ‘outliers’ stem from
“complexities” in the data, such as the inclusion of double or multi-peaked storms.

The use of reliable storm data in the calibration of the curves is vital in getting satisfactory
results from this methodology. Inconsistencies in the positions of some storms in relation to
the curves (‘noise’ in plotted data) could be caused by a number of factors.

¢ Uncertainty in the estimation of catchment rainfall, due to inadequate spatial coverage of
rainfall stations (pluviograph as well as daily read), could cause a considerable ‘noise’ in
the distribution of data; hence an adverse effect on the final results. This is important when
there is a strong rainfall gradient across the catchment (eg. Boggy Creek), as well as when
modelling events caused by of thunderstorms. The uncertainty in the weighted catchment
storm rainfall has a two-fold effect: both volumetric runoff coefficient and assigned storm
rainfall (label) are in error. The calculated runoff coefficient, especially for small events, is
very sensitive to the value of rainfall used.

e The intensity of rainfall is known to have an effect on the results. An intense burst may
result in a higher runoff coefficient compared to a storm having distributed rainfall (less
intense) with the same amount of rainfall, under similar antecedent conditions. This may be
due to infiltration-excess overland flow being generated.

s Spatial variation in rainfall will result in inconsistencies in the results. For example, a
partial area storm occurring closer to the catchment outlet, may produce a higher runoff
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coefficient compared to a storm having uniform rainfall over the catchment with same
amount of rainfall, under similar antecedent conditions.

¢ Measurement errors in the data and errors in estimation will increase uncertainties in the
fitted curves, eg. rating table extrapolation.

e The estimation of the baseflow at the start of the event could be in error, due to the
influence of recent antecedent rainfall on the catchment.

In addition to the above, although the selected data generally covers a wide range of
baseflows, the availability of few storms of large magnitudes restricts the adequate definition
of the fitted curves at the high-rainfall end.

4.4.2 Advantages and Disadvantages of Proposed Loss Model

The proposed method for loss modelling has advantages over the conventional procedures
with respect to the subjectivity in separation of initial loss and timing errors in streamflow and
rainfall data, as only volumetric runoff coefficient, pre-storm baseflow and storm rainfall are
involved in the analysis. Hence, this method is less subjective and less susceptible to timing
errors in the data.

One of the disadvantages of the proposed method is that the relationship only holds when
pre-storm baseflow exists (a zero baseflow could be representative of a wide range of
catchment wetness). As a consequence, this method has only a limited applicability for
streams which are dry for a major part of the year (eg. Wanalta, Warrambine).

The relationship developed to estimate the volumetric runoff coefficient is not explicit in time;
hence application of the loss model to a storm event requires some manipulation to transform
the cumulative function to be time variant. This can be conveniently carried out using a small
computer program or worksheet.

The method does not account for the depletion of soil moisture (catchment wetness) during
the rainless periods of a storm. The inclusion of the depletion of soil moisture is an area which
requires further work.

4.4.3 Applicability for Flood Forecasting and Design Purposes

This method would seem to have direct applicability in real-time flood forecasting. With
established ‘saturation curves’ for the catchment, and knowing the baseflow at the onset of
the storm, the initial loss and the variable proportional runoff factors can be estimated
progressively as explained in Chapter 3. Then, the calculated rainfall excess can be applied to
a routing model to predict the flood hydrograph. This may be continued until the rising limb
of the observed hydrograph is formed. Corrective measures may then have to be taken to
match the hydrographs. The suitability of the proposed loss model for flood forecasting is
evaluated in Chapter 6.

This method can also be applied for design purposes if the mean or median value of pre-storm
baseflow (event), or any design level of antecedent condition, is known. It may be noted that
this loss model is based on the analyses of complete storms. In contrast, the design rainfalls
given in ARR87 are not. This incompatibility impairs the direct applicability of the proposed
loss model in application for design purposes.
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5. DEVELOPMENT OF THE LOSS MODEL ON A REGIONAL BASIS

5.1 Catchment Characteristics Selected for Regional Analyses

An understanding of the factors that affect rainfall losses is desirable to explain observed
differences in rainfall losses between different catchments. Such an understanding would give
an insight in the choice of characteristics, and the likely predictive success of the selected
variables.

The catchment characteristics relevant for this study can be classified into several categories.

Climatic factors

Morphometric characteristics
Soil characteristics and geology
Land use

A range of physical characteristics was derived for each of the study catchments. These
characteristics were estimated from 1:100,000 topographical maps and other published
information (eg, DCNR, 1994). A description of these characteristics is listed below.

AREA: Catchment area in (km®)
Drainage area measured with a planimeter from a 1:100,000 map.

ANNRAIN: Mean annual catchment rainfall (mm)
Thiessen weighted mean annual rainfall using stations having more than 40 years of data.

MARUN: Mean annual runoff (mm)
Mean annual runoff measured at the gauging station, expressed as a depth in mm.

WETDAY: Number of wet days per year
Defined as average number of rainy days (0.2 mm rainfall as threshold) at a representative
long-term daily rainfall station. For large catchments (eg. >150 km?) weighted average of a
number of representative stations was estimated.

PET: Potential evapotranspiration (mm)
Nathan and Pamminger (1995) have prepared a set of maps for Victoria showing mean
potential evapotranspiration rates for each month of the year as well as for the whole year.
These maps are based on the use of Morton’s (1983) complementary procedure for
estimation of regional evapotranspiration. The PET was estimated for each catchment from
the isohyetal map for average annual potential evapotranspiration given in the above report.

BFI: Baseflow index
Baseflow index is defined as the ratio of baseflow volume to the total volume of streamflow
on long-term basis (Nathan and Weinmann, 1993). It should be noted that this index is
sensitive to the method used for separation of baseflow. For this study, BFI was calculated
by separating the baseflow using the HYBASE program with 24 hour time interval, filter
factor of 0.925 and a single pass, consistent with the findings of Nathan and McMahon
(1991).

NFI: No-flow index

No-flow index is defined by the percentage of time in which the catchment ceases to flow,
or falls below a measurable quantity. In this study 1 percent of the long term mean flow was
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taken as the measure of cease-to-flow conditions as defined by Nathan and Weinmann
(1993). Hourly flow rates were used to calculate the index.

BVI: Baseflow variability index
This index is a measure of variability of baseflow and was calculated from the continuous
separated baseflow series by the following formuia:
BF] = Baseflow exceeded 25% of time — Baseflow exceeded 75% of time
Baseflow exceeded 50% of time
Note that this index is undefined for streams for which cease-to-flow conditions prevail for
most of the time (eg. NFI > 0.30)

SHAPE1, SHAPE2 : Catchment shape factor
Two catchment shape factors were considered.
SHAPE] :- Defined as the catchment perimeter divided by the area, where the catchment
perimeter is the total length of the watershed divide. The units are in km™.
SHAPE? :- Defined as the catchment perimeter divided by the perimeter of the circular
catchment of same catchment area. This is a dimensionless index.

27, L4 : Rainfall intensity for 20 year return period and 2 h and 48 h durations. (mm/hr)
Rainfall intensities were calculated from the IFD curves given in Chapter 2 of ARR(1987) at
the centroid of the catchment. As the indices are point specific, they are only approximate
for large catchments.

IRATIO : Ratio of rainfall intensities of 48 h and 2 h durations for 20 year return period.
This is the ratio of rainfall intensities derived for 48 hour and 2 hour durations for 20 year
return period. IRATIO = B P e

S$1085 : Slope of the central 75 percent of the mainstream length
The stream slope was defined as the mainstream slope (expressed as a percentage) between
the 10 and 85 percentiles of mainstream length upstream from the catchment outlet, ie. the
slope of the approximately central 75 percent of mainstream length.

FCOV, FCOVW ; Percentage of catchment covered by dense/medium forest
The percentage of catchment covered by forest was determined from 1:100,000 topographic
maps using a planimeter, based on the area designated as dense, medium and scattered
forest or scrub. Parameters were:
FCOV :- The percentage of catchment covered by dense and mediurn forest and also dense
and medium scrub.
FCOVW - This is a weighted measure taking into account all types of forest cover. Weights
of 3, 2, and 1 were given for dense, medium and scattered respectively.

FCOvVw = > DENSE+2 MEDI;JM +1-SCATTERED

Hence, if the catchment is covered by 100% dense forest, FCOVW = 100%
If the catchment is covered by 100% scattered forest, FCOVW =33.3%

The derived catchment parameters for the study are given in Table 5.1. The above list is
devoid of a suitable soil parameter as no suitable measure of the hydrologic properties of soils
at the catchment scale could be found.
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Table 5.1 : Catchment parameters derived for regional study

Drainage | M.annual | M.annuat | Annual { Number | Baseflow| No-flow | Basefiow | Shape | Shape |20 yt/2hr.|20 yr/48hr.) Intensity | main Forest | Weighted
Station Area Rainfall | Runoff PET | of wet | Index Index | variability | Factor 1 | Factor 2 | rainfall | rainfall ratio stteam | cover forest
Code | (km?) (mm) (mm) | (mm) | days ' Index | (km)?! (mm/r) | (mmmr) | PLe/ L | slope(%) | (%) | cover (%)
AREA |ANNRAIN| MARUN| PET | WET | BFI NFI BVl |SHAPEL|SHAPE2| I, *Ie | IRATIO | 51085 | FCOV | FCOVW
224209 106.0 840 146.5 1025 129 0.14 0.42 5.88 1 040 1.171 25.69 3.80 0.148 1.26 99.5 99.5
226209] 214.0 1050 246.7 980 201 0.48 0.00 1.92 0.36 1.48 | 20.57 2776 0.134 0.30 5.4 B.3
226222 . 62.2 1480 477.9 980 162 0.81 0.00 0.52 0.53 1.17] 2244 3.52 0.157 0.81 8.8 98.8
227228 443 1140 333.5 1000 190 0.41 0.00 1.74 0.69 129 | 2243 3.36 0.150 0.91 39.2 59.5
231211 234.0 985 122.7 1100 181 0.32 0.25 3.05 0.36 1.54 ] 23.45 3.14 0.134 1.65 94.3 96.1
231213] 153.0 1020 219.5 1100 139 0.41 0.14 3.54 0.35 1,221 23.40 3.07 0.131 0.87 90.1 93.2
2312191 323 800 64.5 1080 144 0.13 0.39 - 0.84 1.35] 23.21 3.06 0.132 2.40 85.0 85.6
233223 57.2 670 38.8 1075 102 0.09 0.33 - 0.59 1.251 20.72 224 0.108 1.02 0.0 0.0
2352191 89.8 1900 877.5 1050 | - 216 0.58 0.00 1.61 0.49 132 21.86 3.67 0.168 0.94 76.7 68.1
401220] 464.0 1000 182.0 1150 132 0.60 0.01 2.59 0.23 1.37] 2417 2.73 0.113 .86 72.7 80.7
403226f 108.0 1090 308.3 1130 114 0.55 0.05 3.27 0.56 1.63[ 23.14 2.52 0.109 1.50 59.6 72.3
4042071 4510 920 221.7 1125 156 0.45 0.05 3.02 0.24 145} 2551 341 0.134 1.20 60.5 71.3
405229] 108.0 480 9.4 1160 96 0.08 0.73 - 0.43 1.25] 21.88 2.21 0.101 0.15 51.7 50.6
405237] 332.0 925 254.7 1110 130 0.47 0.01 2.52 0.25 1.26 ] 25.54 3.24 0.127 0.83 18.2 39.6
405240] 609.0 710 146.6 1080 158 0.29 0.16 4.00 0.22 1.54] 22.11 2.68 0.121 Q.51 | 60.0 550
4052571 50.7 1650 666.1 1025 156 0.72 (.00 1.31 0.92 1.841 23.05 2.60 0.113 4.12 92.0 092.0
405261 62.6 750 142.3 1055 97 0.25 0.16 5.40 0.55 123 ] 21.87 2.80 0.128 1.16 10.5 23.5
406214] 234.0 625 82.8 1160 136 0.25 0.20 7.31 0.31 1351 21.73 239 0.110 0.63 39.0 474
4152241 259.0 565 45.8 1110 114 0.09 .66 - (.28 1261 21.79 2.19 0.100 0.35 24.8 30.9°
415238] 141.0 555 51.6 1100 138 0.15 0.50 - 0.9 1.31] 22.26 241 0.108 0.42 27.1 40.0




5.2 Applicability of the Proposed Loss Model for Different Types of
Catchments

The importance of catchment characteristics in explaining runoff coefficient was investigated
using the coefficient of determination (R?) and standard error (SEE) as performance indices.
It should be noted that R? and, more specifically, SEE cannot be considered as sufficiently
robust parameters to compare mode! performance for different catchments. For example, the
same ‘noise’ in the runoff coefficients for a ‘low runoff’ catchment affects (ie. reduces) the
R? considerably more than for a ‘high runoff” catchment. Similarly, SEE is also shown to be
highly related to the range of runoff coefficients used in the calibration; hence, some
standardisation such as expressing as a percentage of the mean is required for comparison of
the performance of different catchments. The stability of R? is also adversely affected by the
presence of outliers. The R? and SEE plotted against selected catchment characteristics are
shown in Figures 5.1 and 5.2. '

Figure 5.1(a) appears to give an impression that the R® increases as the catchment area
increases. Such results must be interpreted carefully, as catchments of smaller areas (<100
km®) have been drawn from different rainfall regimes which have diverse characteristics,
whereas the large catchments have predominantly low rainfalls. The only conclusion that can
be made is that the proposed methodology can satisfactorily be applied for large catchment
areas (eg. Sugarloaf Creek, Tallagatta Creek, Holland Creek), despite the likely spatial
variability of the storm rainfalls over such large catchments.

The runoff responding to a storm event is partly due to surface runoff and partly due to sub-
- surface flow (baseflow). Apart from the antecedent moisture conditions, the relative
magnitude of the surface runoff depends on the rainfall characteristics and the physical
characteristics of the catchment. For example, a catchment which has thick porous soil may
produce less surface runoff, but more sub-surface flow. Baseflow indices such as baseflow
index (BFI) and baseflow variability index (BVI) provide convenient and simple indicators of
catchment behaviour in this regard.

As it can be seen from Figure 5.1(b), there is no general trend in the plot of R? of the fitted
curves against BFI, although two catchments with BFIs greater than 0.60 (Snobs Creek, La
Trobe River) show distinctly low R? for the fitted curves. Similarly, the same two catchments
have the lowest BVI [Figure 5.1(d)], in which the tendency to have low R? (when BVI is less
than 1.5) is evident. Figure 5.1(b) indicates that good relationships have been obtained for the
catchments having BFI in the range of 0.20-0.60.

Figure 5.1(c) examines trends in R? of the fitted curves with respect to the mean annual
rainfali. The wet catchments (mean annual rainfall greater than 1300 mm) show a tendency to
have a low R?, compared with the R* values of the rest of the caichments. Incidentally, both
La Trobe River and Snobs Creek are located in high rainfall areas. Wanalta Creek and
Warrambine Creek exhibit cease-to-flow conditions for a major period of time, and hence the
low R? associated with these catchments may be due to the lack of suitable events for
modelling.
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Figure 5.2 indicates that there is a slight tendency for a decrease in SEE with mean annual
rainfall and baseflow index. This may be viewed as a result of low runoff coefficients
associated with the catchments having high BFI and mean annual rainfall rather than the
performance of the fitted curves. When SEE is expressed as a percentage of the mean, no
significant relationship is shown either with the mean annual rainfall or BFI. This shows the
limitation of the SEE in evaluating the performance of the fitted curves in relation to
catchment characteristics.

The La Trobe River has the highest BFI (0.81) and lowest BVI (0.52), and has a mean
annual rainfall of 1480 mm. As the R? of the fitted curves for this catchment is only about
0.05, it is of particular interest to review the results with respect to rainfall and flow
characteristics of the catchment. Time series plots of rainfall and streamflow show that the La
Trobe River exhibits very strong baseflow characteristics, with 81 percent of the streamflow
coming from sub-surface flow; the baseflow remains high throughout the year. As a
consequence, the runoff coefficients of the events used in calibration of ‘saturation curves’
were all below 0.15. The variability of the baseflow over the year is also low. This could be
attributed to the relatively even spread of rainfall over the year. As there are no prolonged
rainless periods, there are no events for calibration which have low pre-storm baseflow; the
latter are important in defining the fitted curves. Snobs Creek with runoff coefficients less
than 0.20, also shows a hydrologic behaviour similar to that of La Trobe River. Although the
results can be partially explained with respect to the baseflow characteristics, it is important
to understand the physical catchment characteristics that explain the hydrologic behaviour of
the catchments.

The low R? of the fitted curves for the La Trobe River and Snobs Creek is considered to be
due to the low runoff coefficients (< 0.20), and the small range in pre-storm baseflow. The
‘noise’ in the data precludes an adequate fit for a logistic function. A simpler model would be
adequate for this type of catchment.

In conclusion, a catchment having BFI greater than 0.60, a BVI less than 1.5, or a mean
annual rainfall greater than 1300 mm, can be considered as likely indications for strong
baseflow conditions; for these, the ‘saturation curves’ of the type proposed in this study
would not likely be fitted satisfactorily. More research is needed to strength these
recommended guidelines, however.



5.3 Regionalisation

5.3.1 Basis for Regional Relationship

Chapter 4 described a methodology for derivation of prediction equations for volumetric
runoff coefficient for individual catchments, as a function of pre-storm baseflow and storm
rainfall. The methodology has been applied for 20 Victorian catchments, located in different
rainfall regimes and having different catchment characteristics. The catchments also provide a
reasonably good coverage over much of Victoria (Figure 3.1). It was shown in Section 5.2
that the response to rainfall is highly dependant on the physical characteristics of the
catchment and the climatic parameters, in addition to antecedent wetness.

A basic assumption made in this study is that all catchments can be considered to be of one
homogeneous region, ie. differences in hydrological response can be attributed solely to the
catchment characteristics and climatic factors. This leads to the concept of one generalised
prediction equation for volumetric runoff coefficient for all catchments, inclusive of
catchment and climatic parameters in addition to antecedent wetness index and storm rainfall.
The prediction equation is of the form:

r.o.c. = f(antecedent wetness index, storm rainfall, catchment and climatic parameters)

5.3.2 Prediction Equations on Regional Basis
Prediction equations on a regional basis can be derived by:

(i) Pooling the event data and fitting one general equation of suitable form. The catchment
parameters are taken as same for all events for any particular catchment;

(ii) Estimating regression parameters as a function of catchment and climatic parameters (eg.
the regression parameters of a, b, ¢ and 4 in Equation 3.1).

Pooling the data as proposed in (i) could cause a significant bias in the results, as the number
of events used for different catchments is not the same (they range from 25-80 events).
Hence, regional estimation of regression parameters was adopted in this study.

In Chapter 4, the four parameter logistic function given in Equation 3.1 were fitted to event
data for each catchment to obtain prediction equations for runoff coefficient (Table 4.1). It is
not feasible to establish regional relationships for all four parameters due to parameter inter-
dependency. As an approximation it is possible to fix certain parameters that show less
variability over the range of catchments analysed. This will reduce the accuracy of the
prediction equation, but the parameter estimates would be more suitable for regionalisation.

An inspection of Table 4.1 reveals that the parameter d is very close to 1.0 for all catchments
except for the Lerderderg River (@ Sardine Ck.). Hence, parameter 4 in the regional
equation was fixed at an average value for the catchments tested (with Lerderderg River
omitted as an outlier). Similarly parameters b and ¢ were also fixed at their average values as
they are relatively stable (less variable) than parameter a. The function is now reduced to a
single parameter model with only the parameter a left to be optimised. The simplified function
is shown in Equation 5.1.
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This simplified function (Equation 5.1) was re-fitted to all catchments and the optimised
values for the parameter ¢ are given in Table 5.2. In this table the R? and SEE of the fitted
relationships are also compared with those obtained from the original four parameter model.

Table 5.2 : Optimised a parameter for 1-parameter regionalisation equation.

Station One parameter model 4 parameter model
Code |Parametera| R’ SEE R’ SEE
227228 71.2 0.84 0.066 0.87 0.061
224209 27.7 0.71 0.114 0.80 0.105
415224 8.2 0.61 0.086 0.77 0.075
226222 476 - - 0.05 0.026
231213 48.6 0.67 0.101 0.71 0.100
233223 7.6 0.28 0.150 0.42 0.108
405237 128 0.85 0.042 0.90 0.035
405261 24.8 0.74 0.093 0.79 0.085
405229 10.3 0.30 0.134 0.45 0.083
231211 69.3 0.76 0.071 0.88 0.054
226209 95.2 0.70 0.055 0.83 0.041
405240 31.6 0.88 0.053 0.91 0.046
235219 288 0.57 0.089 0.58 0.089
403226 280 0.78 0.038 0.87 0.030
401220 248 0.70 0.026 0.88 0.017
404207 102 0.90 0.040 091 0.037
405257 572 - 0.053 0.39 0.033
406214 31.7 0.84 0.050 0.88 0.045
231219 23.8 0.55 0.084 0.75 0.066
415238 15.7 0.57 0.076 0.68 0.068

It is to be expected that R? would be reduced and SEE increased when the number of
parameters of the function are fixed with average values. The acceptability of the reduced
function (Equation 5.1) for the regional analysis depends on the ability of the model to fit the
data satisfactorily, with only a small reduction in R>. The reduction in R? is only marginal for
those catchments whose parameter values of b and ¢ are close to the average values, but up
to 20 percent for other catchments. The catchments having unsatisfactory relationships with
the original function (4-parameter model) showed a greater reduction in R?. For seven
catchments, the R? has been reduced by more than 15 percent.

Based on the above results, it was concluded that the simplified function (Equation 5.1) is
adequate for use in a regional analysis. With this model, the regional variability of runoff
coefficients is attributed to the variation of the parameter a. A ‘low runoff’ catchment is
represented by a large value of parameter a and vice-versa for a ‘high runoff’ catchment. The
success of the regional model depends on the ability to predict the parameter a from the
catchment and climatic parameters.
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5.3.3 Selection of Catchment Parameters for Regional Equations

Table 5.1 presents a list of catchment and climatic parameters considered to be useful for
derivation of a regional model for loss parameters. The development of a regional equation
would be based on the following criteria:

e Only the parameters highly correlated with the dependant variable would be used;

e The selected parameters should themselves be nearly independent (uncorrelated);

e The parameters should be ecasily obtained. For example, the mean annual rainfall
(ANNRAIN) may be used in preference over the mean annual runoff (MARUN) as the
MARUN can only be estimated for gauged catchments. Similarly, baseflow characteristics
(BFI, BVI) can only be estimated for gauged catchments, unless they can be estimated
from regional equations;

¢ The number of parameters used in the regional equation is limited to allow for an adequate
degree of freedom in the fit. As only 20 catchments are used in the regional study, the
number of parameters involved in the regional equations should not exceed about three.

Table 5.3 shows the correlation of parameter a with various catchment characteristics. This
table indicates that mean annual rainfall (ANNRAIN), mean annual runoff (MARUN), and
baseflow index (BFI) are correlated to a significant degree with the parameter g (with
R?> 0.60), whereas shape factor (SHAPE2), forest cover (FCOV), and mean stream slope
(81085) show only a poor correlation (R? = 0.20 - 0.30). However, some of the ‘low’
correlated parameters can still be useful in improving the overall fit of a regional equation.

Table 5.3 : Correlation of parameter a against catchment characteristics

Catchment Coeff. of det.
characteristic R
AREA 0.03
ANNRAIN 0.67
MARUN 0.63
WET 0.10
PET 0.12
BF1L 0.77
BV1 0.30
SHAPE1 ’ 0.16
SHAPE2 0.21
1, 0.01
Plg 0.05
IRATIO 0.06
S1085 0.30
FCOV 0.21
FCOVW 021

- Plots of parameter a against a number of useful catchment characteristics are shown in Figure
5.3. The relationship between parameter a and catchment parameters such as mean annual
rainfall (ANNRAIN), mean annual runoff (MARUN), and baseflow index (BFI) are shown to
be highly non-linear. The catchments with higher ANNRAIN, MARUN, or BFI exhibit lower
runoff (higher losses), in response to increase in parameter a. Figure 5.3 indicates that the
increase in shape factor (SHAPE2), forest cover (FCOV), or stream slope (S1085) tend to
result in a reduction in runoff coefficient, although the relationships are not very significant.
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Figure 5.3 : Plot of parameter a against catchment characteristics
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(d) Plot of parameter a against shape factor (SHAPE2)
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Cross correlation coefficients (correlation matrix) of the catchment parameters considered for
this study are shown in Table 5.4; it is necessary that the catchment parameters used in the
regional equation to be nearly independent (uncorrelated). The table indicates that, for
example, baseflow index (BFI) and mean annual rainfall (ANNRAIN) should not be used in
combination as they are highly correlated (R?=0.76). As both ANNRAIN and BFI are highly
correlated with the independent variable @ (R? = 0.70), they are considered as primary
dependant variables to derive alternative prediction equations for parameter a. Parameter BFI
can be used to derive relationships for gauged catchments, whereas ANNRAIN would be the
suitable aiternative for ungauged catchments. With due consideration to the independence of
parameters (Table 5.4) and the correlation associated with parameter a (Table 5.3), SHAPE2,
S$1085 and FCOV were selected as secondary parameters. The weighted forest cover
(FCOVW) has not led to an improvement in correlation with the parameter a; hence, the
simpler measure of forest cover (FCOV) has been used in the regionalisation procedures.

Table 5.4 : Correlation matrix of catchment parameters

AREA |RAIN |[MARUNWET |PET |BFI BVl |SHAPE}SHAPE2I20_2 |120_48|IRATIO S1085|FCOVI|FCOVW

AREA 1.00
RAIN | -0.25| 1.00
MARUN] -0.23 | 097 100
WET 006]| 066 0.6171 1.00
PET 041]-0.52] -047] -0.53] 1.00
BFI 005]| 083 078 049]-035}| 1.00
BVI 0.17] 069| -0.58} -049] 039}-0.77} 1.00
SHAPE!| -0.77| 039| 035| 0.06] -045] 0.13 ]-0.28 1.00
SHAPE] 020) 031| 0.30] 026] 002} 0.38]-0.11 0.25 1.00
120_2 030]| 007 002]-0.07] 021] 0.181 0.06] -0.21 000] 1.00
120_48 | -0.06| 0.56| 049| 055]-048] 040]-026] 003} -0.24] 0.56] 1.00
IRATIO| -0.20| 0.65| 0.59| 0.70{ -065{ 042]-034] 013§ -025| 021 093] 1.00
s1085 | -031 046 039 0.09]-0.20{ 0.32]-0.17] 072{ 062] 027] 0.13]| 004] 1.00
FCov |-0.05{ 048 037| 028]-0.08] 0.38]-027| 0.19| 0.18] 047] 052]| 041] 046] 1.00
Foovwl -0.04 | 045| 034 025]-004{ 042]-027]| 018] 017} 059| 056| 040] 048] 097 1.00

5.3.4 Regional Prediction Equations for Parameter ‘a’

BFI and ANNRAIN were separately linked with shape factor (SHAPE?2), main stream slope
(S1085), and forest cover (FCOV) to form different combinations of prediction equations for
parameter g, both in linear and non-linear forms. As the R? associated with the fitted
functions of linear form is comparatively low, the equation of non-linear form was considered
for further study. The R? and SEE associated with the prediction equations derived using
different combinations of catchment characteristics are given in Table 5.5.

It should also be noted that the prediction equation for parameter a developed by combining

BFI and ANNRAIN has not resulted in an improvement in R?, showing the effect of cross-
correlation between the two parameters.
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Table 5.5 : Regression analyses for estimation of parameter a from catchment

characteristics
Regression equation :
a = a+ b(VARI)® (VAR2)? (VAR3)®
VARI VAR2 | VAR3 % SEE
BFI - - 0.91 525
BFI $1085 - 0.98 26.9
BFI SHAPE2 | - 0.98 27.3
BFI FCOV - 0.91 51.8
BFI S1085 SHAPE2 0.98 26.7
| BFI S1085 FCOV 0.98 27.7
BFL SHAPE2 | FCOV (.98 25.3
| ANNRAIN | - - 0.67 98.2
ANNRAIN | Si085 - 0.74 90.3
| ANNRAIN | SHAPE? | - 0.74 91.0
ANNRAIN | FCOV - 0.69 101.7
ANNRAIN | S1085 SHAPE2 0.75 92.1
ANNRAIN | S1085 FCOV 0.74 93.0
ANNRAIN | SHAPE2 | FCOV 0.76 90.3
| ANNRAIN | BFI - 0.93 46.1
Gauged Catchments

The non-linear relationship between parameter a and BFI has an R? of 0.91, indicating the
strong influence of BFI. The relationship can further be improved by inclusion of either
S1085 or SHAPE2 in the regional equation. As the inclusion of the third parameter (FCOV})
has not yielded any significant improvement, the prediction equation for parameter a can be
best represented by the following alternative two parameter models having R? of 0.98, and
SEE of 26.9 and 27.3 respectively.

a = 2.68+860.8 (BF***(51085)"* | (5.2)
R> = 0977, SEE = 269
a = 7.55 +719.5 (BFI)*%® (SHAPE2)! 1 (5.3)
R? = 0.976, SEE= 27.3

Equations 5.2 and 5.3 provide similarly good prediction for parameter a. However, by virtue
of its marginal improvement in R* and SEE, Equation 5.2 is adopted here. Knowing the BFI
and S1085, the parameter a can be estimated from Equation 5.2 for any catchment and this
may be substituted in Equation 5.1 to obtain the storm runoff coefficient for the given pre-
storm baseflow and storm rainfall total. Alternatively, the regional equation based on BFI and
shape factor (Equation 5.3) can also be used in conjunction with Equation 5.1. The
disadvantage of these equations is that they can only be used for gauged catchments, unless
the BFI is estimated from a regional equation.

In Figure 5.4, predicted values of parameter a using Equation 5.2 are compared with those
used for fitting the prediction equation.
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The applicability of the regional equation when the BFI is greater than 0.60 is doubtful, as the
R? of the fitted curves for such catchments was found to be low. However, the magnitude of
the predicted runoff coefficients is expected to be in the same order as the observed. The
predicted parameter a values for both La Trobe River and Snobs Creek are very large,
indicating low runoff coefficients. '

Ungauged Catchments

It should be emphasised that Equations 5.2 or 5.3 cannot be applied directly for ungauged
catchments, unless BFI is estimated from a regional equation. Nathan et al. (1995) derived
such an equation from direct analyses of streamflow data from 195 catchments, and showed
that BFI can be estimated as a linear combination of seven catchment parameters (catchment
area, elevation, potential evapotranspiration, forest cover, fraction of catchment underlain by
sandstones, mean annual rainfall and mainstream length). The R? of the fitted equation was
0.72. Lacey (1996) developed a procedure for prediction of BFI for ungauged catchments
using an index based upon the native vegetation and underlying geology from analyses of BFI
and catchment properties for 114 catchments in Victonia..

Procedures for estimation of BFI given by Nathan et al. (1995) or Lacey (1996) can be used
in conjunction with Equation 5.2 or 5.3, when applying the regional loss model for ungauged
catchments.

Alternatively, a prediction equation for parameter a can be developed using ANNRAIN; the
best relationship established is shown in Equation 5.4. This may be used in conjunction with
Equation 5.1.

-57.1 + 0.004 (ANNRAIN)"* (51085)°%° (5.4)
0.74, SEE = 91.0

a
R2
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The performance indices (R? and SEE) are inferior to those for gauged catchments (Equation
5.2). In Figure 5.5, parameter a values predicted from Equation 5.4 are compared with those
used for fitting the function,

800 T T T T
| @ = -57.1 + 0.004 (ANNRAIN)"™ (81085)°%
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Figure 5.5 : Comparison of parameter a predicted (Equation 5.4) against derived, for
ungauged catchments

For ungauged catchments, use of Equation 5.2 with BFI estimated from a regional equation
may result in same order of accuracy as obtained from Equation 5.4, given that the R’ of the
prediction equation for BFI is in the range from 0.7 to 0.75 (Nathan et al. (1995). A
representative value for BFI can also be estimated from a gauging station upstream or
downstream or that from an adjacent catchment. In the absence of a representative value for
BFI, Equation 5.4 is useful for ungauged catchments, to apply in conjunction with Equation
5.1,

Testing model performance

The suitability of the regional model was investigated by comparing the event runoff
coefficients predicted by the regional model (Equations 5.1 and 5.2) against observed runoff
coefficients for three catchments as shown in Figure 5.6. The results generally appear 1o
agree satisfactorily, given the uncertainty associated with the regionalisation procedure. For a
particular catchment, the tendency to over-predict or under-predict the runoff coefficients as
indicated by the regression line may be viewed as the result of under or over prediction of
parameter a by the regional model (Equation 5.2) added to any tendencies introduced in
simplification of the equation (Equation 5.1). The loss of accuracy during the regionalisation
procedure eventuates in two stages; in generalisation of the loss function using average
regression parameters (b, ¢, d) and in regionalisation of parameter a.

These results may be viewed with some caution, as those catchments have also been used in
calibration of the regional equation.
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6. TESTING THE LOSS MODEL FOR REAL-TIME FLOOD
FORECASTING USING RORB

6.1 Preamble

The importance of the loss model in prediction of runoff hydrographs was emphasised by
Malone and Cordery (1989), who concluded that the loss model is more critical than the
runoff routing model.

The suitability of the proposed variable proportional loss (VPL) model for application in real-
time flood forecasting is investigated below, using the RORB runoff routing model. In the
test, rainfall excess was estimated with the proposed loss model, and routed using RORB
with calibrated parameters for the catchment, and the predicted and observed hydrographs
compared. For successful application of the loss model in real time flood forecasting, the
model should be able to predict the initial rise of the hydrograph accurately. There was no
fitting or calibration of rainfall-excess to match observed data.

It should be stressed that this is a very stringent test; in most RORB calibrations, loss
parameters are chosen to give the correct volume of runoff.

6.2 RORB Modelling with a Variable Proportional Loss Model

Seven catchments which were used in the calibration of the saturation curves were selected
for testing the performance of the proposed loss model using the RORB model. These
catchments, given in Table 6.1, have sizes ranging from 32 to 332 km?, and chosen to cover a
wide rainfall range (480 to 1900 mm). The coefficient of determination R of the fitted
relationships for these catchments ranges from 0.45 (Wanalta Creek) to 0.90 (Seven Creeks)
[see Section 4.2]. These values are useful in reviewing the results with respect to the
adequacy of the fitted relationships.

For each catchment, 5-7 events were used to compare the modelled hydrographs (surface
runoff) using the proposed loss model with the observed. The RORB data files for these
catchments compiled by Hill et al (1996b) were used with necessary modifications to
accommodate the proposed loss model. The observed surface runoff hydrographs were
determined by separating the baseflow using a digital filter technique (HYBASE) with the
same parameters as used for determining surface runoff for events used for calibration of
saturation curves (Section 3.2.1). This provides an equitable basis for comparing the
predicted and observed hydrographs. The average calibrated k. values for these catchments
using initial loss/proportional loss model are shown in Table 6.1 (Hill et al., 1996b).

Rainfall excess hyetographs determined by the variable proportional loss model, were used as
input for RORB, with zero losses being specified in the running of RORB itself. The rainfall
excess hyetographs needed to be calculated for each sub-catchment area; this was carried out
by a computer program which reads a conventional RORB data file and creates a data file
suitable for RORB modelling, containing rainfall excess hyetographs and total rainfall
excesses for each sub-area. These rainfall excess hyetographs were determined with the
procedure given in Section 4.3, using catchment specific loss model parameters (Equation
3.1 and Table 4.1) and observed pre-storm baseflow values of the events under consideration.
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Table 6.1 : Catchments selected for testing VPL model for real-time flood forecasting

Catch. | Annual | Catchment | No. of R?of
Catchment Area | Rainfall | averagek. | events fitted

(km®) | (mm) | IL/PL | modelled | curves
Avon R. @ Beazley's Bridge (415224) 259 565 14.1 6 0.77
Aire River @ Wyelangta (235219) 90 | 1900 12.3 4 0.58
Goodman Ck. abv Lerd. tunnel (231219) | 32.3 800 4.8 6 0.75
Moe River @ Darnum (226209) 214 1050 16.3 6 0.83
Lerderderg R. @ Sardine Ck. (231213) 153 1020 12.7 4 0.71
Seven Ck. @ Euroa Township (405237) 332 925 14.9 6 0.90
Wanalta Ck. @ Wanalta (405229) 108 480 13.7 6 0.45

It needs to be emphasised again that the rainfall excess was not adjusted to equal to the value
of surface runoff (volume balance), as the intention was to study the suitability of the loss
model in predicting a hydrograph in real-time.

The RORB runs were made with the non-linearity parameter m fixed at (.8, and using event
optimised %, values, and catchment average k. values respectively, as deterrined by Hill et al.
(1996b). It should be noted that these k. values were determined for RORB with the initial
loss and proportional loss model (IL / PL), and not with the loss model proposed here. This
will have an (unknown) effect on the true optimum k..

The predicted and observed hydrographs for all events modelled by RORB using the
catchment average k. values are given in Siriwardena et al. (1997). Table 6.2 provides
summary information such as actual and predicted runoff coefficients, percentage error in
predicted runoff volume and peak discharge, error in time to peak etc.

6.2.1 Review of Results on a Catchment Basis

Avon River @ Beazley's Bridge (415224)

A feature of the modelled events for this catchment is the considerable time shifts between the
modelled and observed hydrographs. This has been a consistent feature for this catchment;
during screening for suitable events for calibration of ‘S’ curves, it was observed that many
events had runoff which commenced after cessation of rainfall. This delayed catchment
response cannot be satisfactorily modelled by the proposed or any other loss model.

In general, the peak discharge was satisfactorily modelled for the majority of the events.
There appeared to be no bias in the prediction of runoff volume or peak discharge (equal
chance of over or under prediction); under or over prediction of peak discharge is closely
associated with the under or over prediction of runoff coefficient by the loss model. No
reliable assessment on the initial rise can be made due to the excessive time shifts involved in
the modelling. There is evidence of difficulty in re-producing multi-peaked hydrographs with
the proposed loss model (eg. event on 24 Oct. 1975).
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Table 6.2 : Comparison of observed against modelled hydrographs using RORB

Event | Event | Runoff coefficient |  Runoff volume (m’x10%) Peak discharge (m’/s) Error in
Catchment k. Actual | Predicted| Actual |Predicted| % Error | Actual Predicted % Ermror time to Remarks
' Event k, [Catch. k. |Eventk. [Catch. k. {peak (h)
6/02/73 4.0 zero base flow; not modelled
Avon River 19/10/73 | 12.0 0.23 0.27 3.75 5.09 36% 90.1 107.8 93.9 20% 4% -1 |12 h. time shift, good maich
(415224)| 15/05/74 | 18.0 0.26 0.18 447 316 | -29% 76.0 41.9 48.4 -45% -36% -1 {modelled peak low
Catch. average 5/10/74 | 15.0 0.36 0.37 3.84 4.10 7% 72.5 81.9 86.3 13% 19% -2 |24 h. time shift
k.= 14.1| 24710/75 | 12.0 0.54 0.51 7.69 7.28 -5% §3.0 69.6 63.4 -16% -24% -6 |24 h. time shift, multi peaked
28/09/79 | 13.5 (.46 0.52 6.06 7.21 19% | 115.5 1354 130.6 17% 13% -4 |18 h. time shift
4/08/81 14.3 0.53 0.44 5.53 4.50 -19% 106.4 70.1 70.5 -34% -34% -5 |modelled : early rise and low peak
4/01/87 1 14.0 0.31 0.20 2.94 190 | -35% 46.2 23.8 25.3 -49% -45% 0 |initial rise 0.k., modelled peak low
Aire River 1/02/90 | 9.5 0.21 0.19 4.64 404 | -13% 61.5 39.7 35.2 -35% -43% initial rise 0.k., modelled peak low
(235219) S/02/90 } 7.7 0.45 0.35 3.96 3071 -22% 84.2 46.9 36.4 -44% -571% 1 |initial rise 0.k., modelled peak low
Catch. average 11/06/91 | 13.5 0.74 0.20 Data errors ? not modelled
k.=12.3] 15/12/91 | 12.2 0.27 0.27 4.41 4.39 0% 67.5 559 55.8 -17% -17% 1  |Jreasonably good match
ML | 3.0 0.29 0.23 1.52 1.19 | -22% 31.6 18.3 16.0 -42% -49% -jmulti peaked; difficult to model
Goodiman 6/02/73 | 1.5 0.16 0.15 5.97 5.83 2% 31.0 36.8 26.7 19% -14% 1  |reasonably good match
Creek (231219) | 14/10/76 | 3.2 0.37 0.53 0.83 1.22 46% 20.7 22.0 19.1 6% -8% 3  |fairly good match
Catch. average 3/07/78 | 5.7 0.54 0.12 0.64 0.17 -14% 27.1 6.3 7.2 -17% -14% 3 |modelled peak very low
k.=4.8] 6/08/78 | 6.1 0.39 0.34 0.98 087 | -12% 28.5 19.3 20.7 -32% -27% 1 |modelled peak low
19/11/78 | 4.2 0.41 0.34 1.20 1.00 | -17% 479 354 34.5 -26% -28% 3  {modelled peak low
Lerderderg 12/05/74 | 12.1 0.61 0.44 9.82 7.05 ]| -28% | 165.1 103.5 103.0 -37% -38% 3 {good match in shape, but low peak
River (231213)| 20/09/76 | 11.0 0.40 0.41 5.02 5.08 1% 85.1 78.9 744 -1% -13% -2 |modelled hg. rises early; pesk 0.k.
Catch. average 7/08/78 | 14.1 0.39 0.46 5.38 6.39 19% 77.2 83.9 504 9% 17% 1 __|good match
k.=12.7] 4/10/79 | 134 0.42 0.46 4.18 4.57 9% 53.0 53.5 553 1% 4% -2 |modelled hg. rises early; peak o.k.
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Table 6.2 (cont.): Comparison of observed against modelled hydrographs using RORB

Event | Event | Runoff coefficient |  Runoff volume (m’x10% Peak discharge (m/s) Emorin
Catchment k. Actual |Predicted| Actual' [Predicted| % Error | Actual Predicted % Error time to Remarks
1 Eventk, |Catch.k. [Eventk. |Catch. k. [peak (h)
11/08/75 | 17.0 0.29 0.25 2.19 . 1.88 -14% 267 24.0 248 -10% 1% . 1 ivery good match
Moe River 17/09/75 | 10.1 0.26 0.31 2.21 2.60 18% 31.6 35.1 24.6 11% -22% 0 |fairly good match
{226209) 28/06/80 | 15.8 0.15 0.11 3.29 2.36 -28% 41.5 26.2 25.6 -37% ~38% -1 |initial rise 0.k., modelled peak low
Catch. average 21/08/81 16.0 0.33 0.28 2.67 2.26 -15% 233 17.8 17.7 -23% -24% 0 |fairly good match
k.=16.3] 8/09/83 | 14.6 0.19 0.35 1.36 2.48 82% 19.6 39.7 35.9 103% 84% 1 [modelled peak high
13/09/83 | 24.7 0.40 0.37 3.16 2.96 -6% 32.0 28.9 41.2 -10% 29% -5  |very good match with storm k.
13/05/74 7.9 0.49 0.36 19.50 14.50 -26% 284.8 188.1 133.5 -34% -53% -1  |multi peaked; poor match
Sevens Creek 15/09/15 | 15.5 0.51 042 13.40 11.40 -15% 3358 2554 264.9 -24% -21% 3
(405237)| 20/07/8t 12.9 0.37 0.33 9.82 8.89 -9% 158.6 123.0 114.0 -22% -28% -5
Catch. average 3/10/84 | 13.7 0.33 0.21 847 5.61 -34% | 2447 110.6 105.6 -55% -57% -1 |modelled peak very low
k.= 14.9| 22/07/86 | 10.6 0.34 0.36 8.51 8.99 6% | 249.1 199.4 146.1 -20% -41% 1 |modelled peak low
3/10/93 | 22.0 0.53 0.46 16.70 14.00 -16% | 2632 220.0 254.6 -16% -3% -1 |reasonably good match
13/05/74 | 11.3 0.38 0.49 4.95 6.39 29% 543 60.3 56.6 11% 4% - |double peaked;
‘Wanalta Creck | 3/10/74 | 13.2 0.30 0.23 1.20 0.91 -25% 21.1 14.9 14.5 -29% -31% -7 |poor match; timing errors suspect
(405229)| 237110175 | 15.4 0.32 0.31 1.91 1.92 1% | 150 14.2 15.4 -5% 3% - modelled hg, tises early
Catch. average 26/08/79 | 13.3 0.20 0.23 0.81 0.95 18% 15.1 17.7 17.2 17% 14% -1 imodelled hg. rises early
k=137 109/83 | 18.1 0.60 (.38 1.42 0.89 -38% 17.6 9.6 12.1 -45% -31% -4 |modelled peak low
13/01/84 | 12.0 0.13 0.16 zero baseflow; not modelled
3/07/91 | 12.7 0.28 0.26 1.20 1.10 -8% 21.2 19.4 18.3 -9% -14% 3 __ [good match sp. with storm k.




Aire River @ Wyelangta (235219)

For all four events analysed, the peak discharge was underpredicted (by up to about 55%).
However, the initial rise and general shape of the modelled hydrograph well match the
observed hydrograph for all four events. In general, the event k. values tend to give a slightly
better fit with the observed hydrographs.

Goodman Creek above Lerderderg tunnel (231219)

The modelled runoff volume and peak discharge tend to be underestimated for the majority of
events analysed. This is a consequence of the predicted runoff coefficient being too low, in
addition to inappropriate distribution of modelled rainfall excess, especially for events having
distributed rainfall over a long period (eg. events on 7 Nov. 1971 and 14 Oct. 1976). In these
events, the modelled rainfall excesses appeared to be overpredicted towards the end of the
storm. This illustrates the difficulty in modelling multi-peaked events or events with
distributed rainfall over long periods. The modelled initial rise is generally sluggish indicating
excessive losses predicted by the loss model during the initial period of the storm.

Moe River @ Darnum (226209)

For this catchment, the modelled hydrographs appear to match reasonably well with the
observed hydrographs for the majority of the events analysed, including a double-peaked
event, particularly with event k. values. The loss model was also shown to predict event
runoff coefficients to a significant degree of accuracy for all events but one. In general, the
hydrograph rise and shape match with the observed, in particular, for modelling with event k.
values.

-

Lerderderg River @ Sardine Ck. (231213)

For three out of the four events, the runoff coefficient is predicted by the loss model with
sufficient accuracy. As a result, the modelled peak discharges match well with the observed
values for those three events. The event k. values tend to produce better results than with
catchment average k. values. Modelled hydrographs are also well matched in shape with those
observed. However, only two events showed a satisfactory match for the initial rise; for the
other two events the modelled hydrographs tend to rise too early. -

Seven Creeks @ Euroa Township (405237)

The modelled peak discharges are well underestimated, compared with the corresponding
underprediction of the runoff coefficient by the loss model. Multi-peaked events in particular,
are poorly modelled both in shape and magnitude. There is also a difficulty in modelling sharp
spiky peaks of cbserved hydrographs (eg. events on 15 Sep. 1975, 03 Oct. 1984 and 22 Jul.
1986). Only the event on 03 Oct. 1993 was well modelled. For many events the initial rise
tends to start too early.

Wanalta Creek @ Wanalta (405229)

There appears to be a consistent deficiency in the loss model in predicting the initial rise of
the hydrograph. The modelled hydrographs rise too early suggesting that the losses accounted
by the loss model during the initial storm period are too low. The inadequacy of the fit of the
derived loss function (R® = 0.45) for this catchment could have a significant influence on the
results.
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6.3 Review of Results from RORB Modelling

Although the peak discharge is not well modelled for many events, in general the results
indicate that the proposed loss model can be implemented reasonably well for real-time flood
forecasting. This is because the modelling of the initial formation of the hydrograph is
generally satisfactory (except for Avon and Wanalta), given that timing errors could exist in
the data. The Moe and Lerderderg catchments were found to be modelled particularly well by
the adopted procedure.

A successful application of the proposed loss model for real-time flood forecasting would Lie
primarily in the ability of the loss model to predict volumetric runoff coefficients, with a
sufficient degree of accuracy, early in the event. This has a direct relation to the accurate
assessment of the runoff volume of the predicted hydrograph and, in turn, provides a firm
basis for the accurate prediction of flood peaks, despite the inaccuracies that may be due to
deficiencies in the runoff routing model and adopted parameters. It may be worth noting that
the runoff coefficients predicted by the loss model for the selected events of some catchments
were generally lower than the actual (eg. Aire River, Seven Creeks), resulting in a general
underprediction of the modelled peak discharges.

Another aspect which would be worth investigating is whether the flood peaks would be
predicted accurately if a volume balance was achieved, ie. runoff coefficients predicted
accurately. An overview of the results here indicate that there is a slight tendency to
underpredict the peak discharge even if the amount of rainfall excess is predicted accurately.
One possibility is that the k. values being used may be too high for the proposed loss model.
This could also be a result due to inappropriately predicted higher rainfall excesses at the
latter period of the burst, particularly when modelling multi-peaked events.

The results indicate that there may be difficulties in applying the proposed loss model to
storms of a distributed nature or multi-peaked storms. This is because, the curves are mostly
based on single bursts of rainfall and the lack of a suitable function in the distribution of losses
1o account for the depletion of soil moisture during rainless periods within the event.

For practical application of the loss model in real-time flood forecasting, it is required to
calculate the loss model parameters (@, b, ¢ and d) for the catchment as described in
Chapter 3. Knowing the baseflow at the onset of the storm and total rainfall up to the time of
forecast, progressive runoff coefficients can be estimated as explained in Section 4.3, which
can be applied to a routing model (eg. RORB) to formulate the predicted hydrograph. This
may be continued until the rising limb of the hydrograph is formed. Corrective measures may
then have to be taken to match the modelled hydrograph with the observed. This may be
carried out by adjusting an appropriate parameter of the loss model (a, b, ¢ and d), on the
assumption that uncertainties inherent in the procedure are solely due to the inaccuracy of the
loss model.
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7. SUITABILITY OF THE PROPOSED LOSS MODEL FOR
DESIGN FLOOD APPLICATION

This chapter describes a preliminary investigation of the applicability of the proposed loss
model for design (rather than real-time) purposes. The proposed variable proportional loss
(VPL) model can be incorporated in the procedure given in ARR87 to estimate design flood
peaks for various recurrence intervals up to 100 years. In applying the loss model, parameters
of the loss function (g, b, ¢ and d) and a representative value for median pre-storm baseflow
need to be estimated. The results obtained from this procedure are compared with those
obtained from a flood frequency analysis

7.1 Application of VPL Model for Design Flood Estimation

The basic procedure recommended in the ARR87 for estimation of design flood hydrograph

can be summarised as follows :

o Obtain design rainfall intensities for the desired average recurrence interval (ARI) from
Chapter 2 of ARRS7;

e Apply an areal reduction factor and a temporal pattern appropriate for the region
(Chapter 3 of ARR87) to account for the spatial and temporal variation of the design
rainfall;

« Apply a suitable loss model (eg. initial loss/continuing loss or initial loss/proportional loss)
to obtain the rainfall excess hyetograph; median loss parameters are recommended for
application;

¢ Route the rainfall excess using a runoff routing model (such as RORB) to obtain the
design flood hydrograph.

This procedure is repeated for a range of rainfall durations to determine the critical duration

that produces the maximum peak flow.

In testing the VPL model for design application, the rainfall excess in the above procedure is
estimated by applying the VPL model instead of using a conventional loss model. In order to
apply the loss model for design purposes, values for the loss function parameters (a, b, ¢ and
d) and a design value of pre-storm baseflow representing average (or median) antecedent
conditions need to be estimated.

7.2 Determining Pre-storm Baseflow Level for Design

The saturation curves derived for the test catchments show clearly that pre-storm baseflow
(as a catchment wetness index) has a dominant effect on the magnitude of surface runoff. It is
observed that many severe storms occurring under dry antecedent conditions do not cause
significant runoff, whereas moderate storm events under wet antecedent conditions can cause
severe floods. The basic question that arises is what pre-storm baseflow level should be used
for design together with IFD values given in ARR&7.

7.2.1 Seasonal Variation of Pre-storm Baseflow

ARRS87 recommends median loss values in flood estimation. Hence, the median value of the
pre-storm baseflow for all storm events above a threshold rainfall total (or intensity) could be
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considered as a suitable ¢riterion for design purposes. It may be noted that, these could also
include events with negligible runoff.

Another useful measure of the median value for pre-storm baseflow, determined at a gauged
catchment, was based on the continuous baseflow hydrograph over a long period (using
HYDSYS). In calculating the median value the time periods for which surface runoff occurs
were excluded from the analysis. The baseflow values at discrete time intervals (eg. 6 hour
intervals) were ranked and values at 50 percent probability of exceedance was taken as the
representative median value. The analysis was initially carried out on monthly basis; as such
the discrete values of baseflow for different months were treated separately. This measure is
easy to extract and particularly useful in comparing the values for different catchments, as
well as visualising the significance of seasonal variation

The monthly median values of ‘pre-storm’ baseflow for the 20 cawchments are plotted in
Figure 7.1. The seasonal variation is very high for some catchments; one exception is the
La Trobe (226222) for which ‘pre-storm’ baseflow remains high throughout the year. A
marked seasonal variability of the ‘pre-storm’ baseflow implies that the magnitude of the
design floods is sensitive to the month of the year that the design storm is applied.

An average value of ‘pre-storm’ baseflow for the catchments was estimated by taking the
arithmetic average of the monthly median values; the results are shown in Table 7.1.

Table 7.1 indicates that the values derived for median ‘pre-storm’ baseflow appear to be
appreciably lower than the average pre-storm baseflow values of the events used in calibration
of saturation curves. This is because the latter tend to be based on flood events, and biased
towards wet antecedent conditions. The resultant rainfall excess corresponding to median
‘pre-storm’ baseflow would be considerably smaller than that corresponding to the mid range
baseflows of the calibrated saturation curves.
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Figure 7.1 : Seasonal variation of median values of pre-storm baseflow
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Table 7.1 : Median ‘pre-storm’ baseflow derived for test catchments

Station Median ‘pre-storm’ Pre-storm baseflow for
baseflow saturation curves (mm/day)
Code (m’fsec) | (mm/day) Range Mean
224200 0.012 0.010 0.001-1.0 0.21
226209 0.73 0.30 0.02 -3.0 0.59
226222 0.75 1.04 0.50 -2.0 1.27
227228 0.18 0.35 0.04 - 2.0 0.53
231211 0.24 0.09 0.001-2.0 0.36
231213 0.35 0.20 0.002-2.0 0.52
231219 0.003 0.008 0.003 - 0.6 0.07
233223 0.002 0.002 0.001 - 0.7 0.09
235219 1.33 1.28 0.20 -5.0 1.67
401220 1.27 0.24 0.01 -2.0 0.40
403226 0.48 0.38 0.01 -40 0.93
404207 1.06 0.20 0.002-3.0 0.42
405229 0.001 0.001 0.003-1.0 0.12
405237 0.97 0.25 001 -1.5 0.37
405240 0.50 0.07 0.001 - 3.0 0.25
405257 0.73 1.25 0.10 -7.0 1.89
405261 0.05 0.07 0.002-2.0 0.30
406214 0.10 0.04 0.001 - 2.0 0.19
415224 0.007 0.002 0.001 -0.3 0.06
415238 0.017 0.010 0.01 -0.5 0.09

7.2.2 Prediction Equations for Median ‘Pre-storm’ Baseflow

Suitable prediction equations for median ‘pre-storm’ baseflow (expressed as mm/day) were
derived as a function of catchment parameters, for application on ungauged catchments. The
median ‘pre-storm’ baseflow values derived for 20 catchments were correlated against
catchment parameters in order to select suitable parameters for regional analysis. The results
are given in Table 7.2. ANNRAIN, MARUN and BFI were found to be useful indicators with
respect to high coefficient of correlation.

Although ANNRAIN and BFI are not considered to be independent, the two parameters in
combination produced a very satisfactory relationship for predicting median pre-storm
baseflow with a R? of 0.99 (Equation 7.1). Alternatively, mean annual rainfall alone can be
used to derive a prediction equation for median pre-storm baseflow (Equation 7.2).

PRE BASE = 1.78x10".(ANNRAINY*'? . (BFI}"®-0.184 (1.1
R? = 0.99, SEE=0.04

PRE_BASE = 3.88x107.(ANNRAIN)>*?.0.184 ' (7.2)
R? =094, SEE=0.11

where, PRE_BASE
ANNRAIN
BFI

median ‘pre-storm’ baseflow for the catchment (mm/day)
mean annual rainfall (mm)
baseflow index



In applying Equation (7.1) for ungauged catchments, the baseflow index needs to be
estimated using a regional prediction equation or from a representative gauging station in a
nearby catchment. Equation (7.2) can be directly applied.

Table 7.2 : Correlation of median ‘pre-storm’ baseflow with
individual catchment characteristics

Catchment Coeff. of deter.
Characteristic 159
AREA 0.10
ANNRAIN 0.89
MARUN 0.93
WET 0.49
PET 0.23
BFI (.65
BVI 0.37
SHAPE1 0.17
SHAFE2 0.10

1 2012 0.00
20148 0.14
|_IRATIO 0.24
S1085 0.19
FCOV 0.16
FCOVW 0.13

7.3 Application of VPL Model for Design Flood Estimation

Seven test catchments shown in Table 7.3 were used for the estimation of design flood peaks
using the VPL model. The table shows parameter values used for this exercise. It should be
noted that the generalised loss function (Eq. 5.1) with parameter a determined from Equation
5.2 was used to estimate rainfall excess. The catchment specific median pre-storm baseflow
values were determined as described in Section 7.2.1.

Table 7.3 : Design flood peaks from ARR87 procedure using VPL model

Area | Parameter | Antecedent | FFA* 10-yr design flood (VPL)
[Catchment (km?) a baseflow | peak flow | peak flow | % diff. | crit. dur.
(m*/s) (m%s) | (m%s) (hours)
Goodman (231219) 32 10.6 0.003 69 31 -55% 36
Aire River (235219) 90 229.1 1.330 130 133 2% 48
Wanalta (405229) 108 33 0.001 49 15 -69% 30
Lerderderg (231213) 153 98.4 0.351 120 76 37% 48
Moe River (226209) 214 106.7 0.732 4 96 118% 48
Avon River (415224) 259 4.6 0.007 108 58 -46% 30
Seven Cks (405237) 332 134.1 0.971 257 137 47% 72
* Flood frequency analysis
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Design rainfall excesses for 10-year average recurrence interval (ARI) were determined for
the seven test catchments; the excesses were then routed using the RORB model to obtain the
design peak flows. In Figure 7.2, these are compared with comresponding estimates from a
flood frequency analysis.
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Figure 7.2 : Comparison of design flood peaks using VPL model against peaks
from flood frequency analysis for ARI of 10 years

In general, the design flood peaks determined using ‘median’ pre-storm baseflow values tend
to be lower than those derived from the flood frequency analysis.

It should also be noted that the development of the variable proportional loss model is based
on the analysis of complete storms. In contrast, the design rainfalls given in Chapter 2 of
ARRS87 are based on the analysis of bursts embedded in complete storms. This suggests that
the losses need to be less than those estimated from a loss function based on analysis of
complete storms. If the effect due to this anomaly is allowed for, the design flood peaks
determined using 'median’ pre-storm baseflow values would be higher and closer to those
derived from the flood frequency analysis.

7.4 Conclusion

It needs to be stated that the investigations carried out in this chapter are only preliminary and
further studies are recommended to test the VPL model for design applications. In
determining a suitable measure for pre-storm baseflow to be used in conjunction with the
VPL model, the convenience of application and the accuracy of the estimated flood peak need
to be examined. This study also indicates the strong seasonality of average antecedent
baseflow values. This may also need to be considered in deriving design flood hydrographs.
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8. CONCLUSION

8.1 Summary

This report details the development and application of a variable proportional loss model
intended for use in real time flood forecasting and design flood estimation. The method is
based on the assumption that the size of the saturation areas of the catchment increases as the
rain progresses, resulting in an increased proportion of rainfall contributing to runoff as the
storm progresses. This concept is considered to be more representative of the physical
processes than those underlying conventional loss models

The development of the VPL. model was based on the analysis of 20 Victorian catchments,
representing different climatological and topographical regions. Events representing a wide
range of antecedent conditions were selected to estimate the runoff coefficient, pre-storm
baseflow and storm rainfall. A 4-parameter logistic function was then fitted to each catchment
to define volumetric runoff coefficient as a function of pre-storm baseflow and storm rainfall.

. The coefficient of determination (R®) of the fitted relationships varied from 0.05 to 0.91
representing varying levels of success. It can be concluded that satisfactory results have been
obtained for a majority of catchments which have a R* greater than 0.70 (15 out of 20
catchments). Of these, 8 catchments showed relationships with R* greater than 0.85. The
hydrologic behaviour of the La Trobe River and Snobs Creek catchments are different from
the rest and hence cannot be modelled satisfactorily.

A single parameter loss function was developed to use on a regional basis by assigning three
parameters (b, ¢, d) of the general equation (Equation 3.1) by average values of the
catchments analysed. It was shown that the loss of accuracy caused in simplifying the
relationship for regional application is not significant. Values for parameter a determined for
the 20 catchments using this simplified function were regressed against catchment
characteristics to obtain a prediction equation for parameter a. The relationship for parameter
a can best be-represented by a non-linear function involving the baseflow index (BFI) and
mean stream slope (S1085).

The relationship derived either for an individual catchment or on a regional basis allows for
determination of ‘initial loss’ and progressive runoff coefficients knowing the pre-storm
baseflow. Progressive runoff coefficients calculated for the caichments analysed were
consistent and behaved satisfactorily when extrapolated beyond the range of storm rainfalls
used for calibration of the curves. This shows the suitability of the logistic function in
modelling losses.

The suitability of the proposed VPL model for real-time flood forecasting was investigated
for a number of test catchments. The rainfall excess hyetographs determined from the VPL
model were routed using the calibrated RORB model; recorded and predicted hydrographs
were then compared.

A preliminary investigation was also carried out to access the suitability of the VPL model for
design application.
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8.2 Conclusions from the Study

The following conclusions ¢an be drawn from this study.

The results of this study showed that the pre-storm baseflow is a convenient and robust
measure of antecedent wetness and that can be incorporated in a loss model to model the
catchment response to rainfall.

The proposed loss model has the advantage that the separation of initial loss is not
required and timing errors in the data are not critical as with the conventional methods.
One of the disadvantages of the proposed method is that the relationship only holds when
the baseflow is above a measurable quantity. This method is also unable to account for the
changes in the catchment wetness during rainless periods within a storm.

The ‘saturation curves’ of the type proposed in this study cannot be fitted satisfactorily for
the catchments showing strong baseflow conditions (eg. La Trobe River and Snobs
Creek). These catchments are likely indicated by a baseflow index (BFI) greater than 0.60,
Baseflow variability index (BVI) less then 1.5 or mean annual rainfall greater than 1300
mm.

The propesed loss model has a direct application in real time flood forecasting as
proportional runoff factors can be estimated progressively, knowing the pre-storm
baseflow. Testing the loss model using the RORB indicated that the proposed loss model
can be adopted satisfactorily in real-time flood forecasting within the context of
uncertainties associated with the procedure. The successful application lies primarily in the
ability of the loss mode! to predict runoff coefficients accurately; modelling of the rise of
the hydrograph was quite satisfactory for the majority of events tested. However, there
may be difficulties in forecasting the catchment response to storms of a distributed nature
or multi-peaked storms.

The variable proportional loss model can also be applied for design purposes if the mean or
median value of pre-storm baseflow or any design level of antecedent condition is known,
A measure of median pre-storm baseflow was defined on the basis of continuous baseflow
hydrographs over a long period. However, design flood peaks estimated using this
measure were found to be consistently lower than those derived from the flood frequency
analysis. Further research on this area is required before recommending a procedure for
design application.

8.3 Recommendations for Future Studies.

1.

For mode]]ing purposes, the VPL model needs to be incorporated with a routing model
such as RORB. Selection of suitable loss model parameters {a, b, ¢ and d) for optimisation
together with the routing parameters is an area that requires further study.

The study. carried out for testing the suitability of the loss model for real-time flood
forecasting can further be improved by comparing the results with those obtained using
conventional loss models and derived relationships for determining antecedent loss
parameters such as a relationship of initial loss and APL
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3. In view of the positive results achieved from this study, it is recommended that the
adopted procedure be extended over other regions outside Victoria. This would indicate
the suitability of the pre-storm baseflow as a measure of antecedent wetness for the
adopted modelling procedure for those regions.

4. An area which require particular attention is the use of the proposed loss model in design
applications. Further work is required in determining a suitable measure of median
antecedent conditions that need to be applied to obtain design losses. This study indicates
the strong seasonality of median antecedent baseflow values. The implication of this on the

~ design values may also needs to be considered in determining a suitable measure of
antecedent conditions for design applications.

5. The design losses determined from the VPL model are based on the analysis of complete
storms, in contrast to the design rainfalls which are based on the analysis of bursts
embedded in complete storms. A study towards determining corrective measures for this
effect would be useful.
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