Meet Channpisey Nop, Mekong Water Solutions

Channpisey Nop, Irrigation Engineer, Mekong Water Solutions

Water sustainability and scarcity is a real challenge for communities around Australia and internationally every single day. At eWater Group our role is to provide governments, decision makers, water managers, researchers and modellers the tools and expertise to make the right decisions when it comes to protecting our most precious resource: water.

Our people are multi-talented and made up of hydrologists, software developers, water industry experts, international development professionals, and innovators, with a strong commitment to supporting sustainable water management.

Our reach is far and wide within Australia and internationally. eWater Group is responsible for the management of three divisions – eWater Solutions, the Australian Water Partnership, and Mekong Water Solutions.

Mekong Water Solutions, which is funded by the Australian Government, works closely with the World Bank, the Asian Development Bank, and the Royal Cambodian Government, with the skills and tools necessary to provide sustainable and accessible water to communities, farmers and industry across the region.  We do this through innovative solutions, collaborative partnerships, and with local knowledge at the heart of everything.

Channpisey Nop, Irrigation Engineer, Mekong Water Solutions, is responsible for water balance analysis for irrigation system design, and water management system for river basins in Cambodia and brings a special understanding of how important of river managements are to the people of Cambodia.

With an Engineering Degree in Water Resources and Rural Infrastructure supported by the Asian Development Bank from the Institute of Technology of Cambodia, and a master’s degree in water resources engineering with a Japanese Government scholarship from Kyoto University, plus years of experience in water resources engineering and infrastructure in both Japan and Cambodia; Channpisey brings a wealth of knowledge to Mekong Water Solutions.

“I am grateful as a specialist on water resources engineering because I have a chance to share my knowledge and experiences for the development of water resources in Cambodia and in the Mekong region or even internationally through Mekong Water Solutions.”

“I enjoy going to the field to study the real issues that provide a better understanding to solve those problems. The main inspiration for my role is when I can directly support the farmers who could get benefit from our work.”

One key project Channpisey has been part of is the World Bank Cambodia Water Security Improvement Project which is focused on improving water security and increasing water productivity in river basins in Cambodia.

“This project is a real challenge for us [Mekong Water Solutions] to deliver quality work and solutions for our partners and safeguard water availability for Cambodia’s economic development – it is a very important project that will ensure water security for the whole of Cambodia.”

Water scarcity is a major concern for the region which faces many challenges including the reliability and variation of water flow, erosion, and of course climate change.

“Mekong Water Solutions with technical support from Australian expertise in combination with local experiences could effectively solve water issues in the country and in the region. We have many tools developed in Australia that can help with in-country issues such as eWater Source.”

eWater Source is Australia’s own National Hydrological Modelling Platform, developed over thirty years and underpinned by world-class science and technical innovation to provide real-time information on water scarcity and resources. eWater Source is used by governments, decision-makers, water managers, modellers and researchers, in Australia and internationally.

Channpisey is a real champion of support more women and girls into the water sector in Cambodia and in the life of society.

“The woman performs the role of wife, partner, organizer, administrator, director, re-creator, disburser, economist, mother, disciplinarian, teacher, health officer, artist, and queen in the family at the same time. Apart from it, woman plays a key role in the socio-economic development of society.”

“Globally, women have become engines for economic growth. Achieving gender diversity in enterprises is of critical importance to improving business outcomes. Women are often under-represented in the academic and professional fields of engineering, and not enough women have contributed as much as they should be able to the diverse fields of engineering historically and now.”

“For example, at Mekong Water Solutions, I am the only female engineer, so more work needs to be done to support more women and girls in engineering, but we are committed to doing that.”

“We need to encourage women and girls to feel supported to be innovative in the water space, need more value from people around them for their skills by providing more benefits for their hard work, encouraging them to believe in themselves.”

Who are we?

eWater Group is owned by the Australian Federal, State and Territory governments to further develop Australia’s world-class modelling tools and to provide support and training nationwide and internationally.

Our organisation is comprised of three divisions – eWater Solutions, the Australian Water Partnership and the Mekong Water Solutions to deliver water management solutions for communities in Australia and overseas.

We also partner with the Australian Department of Foreign Affairs and Trade, and research groups and institutions to provide expertise and support for sustainable water management solutions in Australia and internationally, now and into the future.




eWater Group celebrates 10 years.

eWater Group celebrates 10 years of water expertise in Australia and internationally

This year marks ten years of eWater Group, and we recently took the opportunity to acknowledge and celebrate our achievements so far and the challenges that we have faced as an organisation over the past decade.

Representatives from across Federal, State, and Territory governments, the private sector, research, and international institutions, recently came together at a special event in Canberra to celebrate eWater Group and its divisions, and our work in Australia, the Mekong, and the Indo-Pacific region.

Since our inception, we have led the way in delivering water management, water security, and sustainability solutions through our expertise, knowledge, program delivery, and water modelling tools and services.

Michael Wilson, Group CEO, said the event was a great opportunity for employees, our owners, and partners to acknowledge the collective efforts by all to deliver water management expertise and tools to meet both the Australian and international needs and the increasing pressure of climate change on our environment.

“I thank our owners and partners for the support and collaboration that have shown eWater Group over the past ten years and now into the future. With this support, our organisation will continue to grow and reinforces Australia as a leader in water management, water security, and sustainability, here and internationally.”

While we acknowledge our achievements over the past decade, we are now looking ahead to the future as eWater Group, and its divisions continue to deliver new programs as well as strengthen and create new partnerships in Australia and internationally.




Sharing Australian water expertise, globally

Our Hydrology team recently joined experts in the Mekong region for a regional training modelling tools program.

Sharing best practices, capabilities, and knowledge of Australian water expertise globally is our mission at eWater Group.

Our people – across eWater Solutions, the Australian Water Partnership, and Mekong Water Solutions – work incredibly hard in the pursuit of sustainable management of water resources.

Members of our Hydrology team – Juanita Moolman, Paradis Someth, Samira Azadi, and Sudeep Nair – recently joined experts from six Mekong countries to run a regional training modelling tools program as part of a joint study.

The Lancang-Mekong Cooperation (LMC) and the Mekong River Commission (MRC) are conducting a joint study on the changing hydrological conditions of the Lower Mekong River Basin. The study aims to develop adaption strategies that address the flooding and drought risks caused by climate change across the river basin.

Paradis Someth, Principal Hydrologist, eWater Group, said “As part of the study, our eWater Group Hydrology Team joined by water modelling experts from across the Mekong region to provide hands-on training and expertise on using, eWater Source to gain a better understanding of this tool and how it can help in impact assessment.”

“eWater Group has a long and proud history of supporting water resource management in the Mekong region. eWater Group’s three divisions – eWater Solutions, Australian Water Partnership, and Mekong Water Solutions – play a critical role in shaping Australia’s technology and helping to build capabilities in the region.”

Australia has been a partner of the Mekong River Commission (MRC) since its inception in 1995. The MRC is an intergovernmental organisation, established “to help the lower Mekong countries build consensus around solutions that ensure a sustainable future for the Mekong and its people through river basin monitoring, assessment, data and information sharing, and dialogue and cooperation.”

Since 2013, eWater Group has supported the MRC and its four member countries (Cambodia, Laos, Thailand, and Vietnam) to enhance the management of the Mekong River’s water for the benefit of all who depend on it.

To learn more about our partnership with the Mekong River Commission read the full story > https://ewater.org.au/ewater-group-and-its-partnership-with-mekong-river-commission/

For more information eWater Source > https://ewater.org.au/products/ewater-source/

Reach out to our team for more > https://ewater.org.au/contact-us/  




Meet Samira Azadi, Hydrologist

Understanding the movement of water in rivers, lakes, dams, and seas, together with the effects of climate change on an increasingly changing environment requires a wealth of knowledge… and a Master’s or other higher degree can help.

Meet Samira Azadi, one of our hydrologists with a Masters in Water Engineering from Iran’s Shiraz University and a Master of Philosophy (MPhil) in Civil Engineering – Water and Environmental – from the University of Newcastle. As an experienced Water and Environmental Engineer, Samira plays a key role in supporting our National Hydrological Modelling Platform, eWater Source.

After completing her MPhil, Samira decided to make Australia her home and moved to Canberra to join eWater Group in 2021 and has been making her mark ever since.

“I wanted to live in Australia because I found Australians are very friendly and welcoming. It feels like a big diverse community. I love that we love our jobs, but it is part of what we do, not everything we do. There is so much more to explore.”  

For Samira, working as an eWater Group Hydrologist, enables her to continue her passion for hydrology and eco-hydrologic modelling, and offering support and advice to our partners across each state and territory to deliver innovative solutions to support sustainable water for cities and communities across Australia and the world.

“I love my job. I am passionate about what I do. And if I want to describe eWater in only one word I would say eWater is a dynamic organisation.”

“I am able to learn new things every day, and share my knowledge and experience with my colleagues, including fellow hydrologists and developers, but also support our partners to deliver water solutions for their communities.”

“My fellow hydrologists empower me and create opportunities for me to learn so I can be the best at my role. I love that my team is so supportive.”  

For Samira, working as an eWater Group Hydrologist, enables her to continue her passion for hydrology and eco-hydrologic modelling, and offering support and advice to our partners across each state and territory to deliver innovative solutions to support sustainable water for cities and communities across Australia and the world.

“I think eWater Source is an incredible tool. Being the national hydrological platform means that everyone is getting consistent data and information to make informed decisions about hydrology, catchments, and river systems.”

“From the moment that the first raindrop comes from the sky to where it lands and how it seeps through the soil, we can show our partners this critical information through dynamic data. This helps them make the right decisions regarding how our water resources are used and where.”

Source helps water experts with all climates and environments and is adaptable and readily updated to include new policy, data, knowledge, and management approaches. It offers the flexibility and ability to link to new and existing models and other information systems; and has been built in partnership with governments, industry, and research organisations.

For Samira the critical issue facing water sustainability and hydrology is data, and ensuring we continue to have the right data with real-time information for our partners and clients. By continuing to invest in Source, we can deliver the best information available to make the right decisions to enhance our ability to manage water sustainability, scarcity, and resilience.

Who are we?

eWater Group is owned by the Australian Federal, State and Territory governments to further develop Australia’s world-class modelling tools and to provide support and training nationwide and internationally.

Our organisation is comprised of three divisions – eWater Solutions, the Australian Water Partnership and the Mekong Water Solutions to deliver water management solutions for communities in Australia and overseas.

We also partner with the Australian Department of Foreign Affairs and Trade, and research groups and institutions to provide expertise and support for sustainable water management solutions in Australia and internationally, now and into the future.




Climate change is increasing water scarcity

Climate change is increasing water scarcity

by Damien Pearson, General Manager, eWater Solutions

Climate change is one of the defining challenges of this century. 

Water is the primary expression of the effects climate change has on humanity and the environment manifesting itself through droughts, floods, water stress, and declining water quality. In many countries reliable supplies of freshwater are becoming scarce, undermining economic growth, increasing poverty, placing vulnerable people at risk and further disadvantage, and damaging the environment on which all life depends. The “livelihood crises” caused by the climate crisis have been identified by the World Economic Forum as “one of the most potentially severe risks over the next decade.” [i]

Effective management of water resources in the face of changing climate is essential to achieving all 17 of the United Nations Sustainable Development Goals agreed by all nations in 2015. 

How Australia can make a difference

As the driest inhabited continent on earth, Australia has become an internationally recognized leader in water policy and management.

Our sought-after expertise includes advice on transparent water allocation systems, efficient irrigation practices, and technologies, drought mitigation measures, allocation of environmental water flows, as well as reforms in urban water and sanitation. 

Importantly in the context of climate change, Australia’s reforms include an explicit focus on economic efficiency and environmental sustainability.[i] However, Australia is a continent with many different climate zones and many different water use profiles.[ii] 

Consequently, Australian states and territories have had to develop water governance frameworks appropriate to their climate and environmental contexts while maintaining content and coherence with national plans and agreements. One size does not fit all.

eWater Source, Australia’s agreed National Hydrological Modelling Platform (NHMP), supports integrated planning, operations, and governance from urban to catchment to river basin scales including taking human and ecological influences into account. Source accommodates diverse climatic, geographic, water policy and governance settings for both Australian and international climatic conditions. 

Our platform integrates water resource assessment and policy, to produce water accounts and manage rivers, and share water according to allocations and agreements.

eWater Source has become an important tool for understanding water supply and demand, managing allocations between users, and delivering water when and where it is needed.

Designed to be adaptive and readily customized to meet local or specific needs, eWater Source is underpinned by world-class science and technical innovation, and assists in the following broad areas:

  • Assessing climate change impacts on water availability and demand over time
  • Establishing effective water policies, regulatory systems, and institutions to enable infrastructure investments (governance policies and systems)
  • Collecting and managing water data and developing water information systems
  • Enabling water allocations and management of river basins and urban water supply

eWater Source has been applied and validated extensively in a wide range of real-world water use situations, both in Australia and internationally, supporting the management of rivers in Australia, the Mekong region, across South Asia, Africa, and the Middle East.

Growing urban demand

Our world is rapidly becoming more urbanized. In 2018, 55 percent of the world’s population was living in urban areas, a proportion that is expected to increase to 68 percent by 2050. Projections show that urbanisation, combined with the overall growth of the world’s population could add another 2.5 billion people to urban areas by 2050, with close to 90 per cent of this increase taking place in Asia and Africa, according to United Nations data set[1].

With a growing focus on meeting a more spatially concentrated water demand, planners require tools to understand their water supply and drainage options and constraints, along with means to assess alternative scenarios to manage these. Water-sensitive urban design (WSUD) seeks to blend traditional rainfall-dependent and alternative water supplies (such as recycled water, and rainwater tanks) to enhance water security.

To understand this blend of supplies and potential trade-offs, eWater MUSIC and Urban Developer models are designed to manage the interaction between various water supply systems as well as capture all water cycle components including rainfall and stormwater runoff, potable water, and the recycling / reuse of wastewater. These tools enable robust and reliable decision-making for secure urban water supplies.

Climate Change is exacerbating the water scarcity crisis through changing weather patterns and increasing frequency and intensity of extreme weather events.  The water challenge has become “too much, too little, or too polluted”.

Climate change adaptation primarily demands climate-resilient water management and eWater is ready to share its experience and tools to assist countries facing persistent poverty and disadvantage resulting from the impacts of climate-driven water scarcity. 

eWater Group is jointly established and owned by the Australian Federal and all State and Territory governments to maintain and further develop Australia’s internationally respected water modelling tools, and to provide support, program delivery, and training domestically and internationally. 


[1] 68% of the world population projected to live in urban areas by 2050, says UN | UN DESA | United Nations Department of Economic and Social Affairs,


[i] Aither 2022 Governance as Infrastructure for Water Security.

[ii] Productivity Commission, National Water Reform 2020, Inquiry Report. p68




Meet Sudeep Nair, Hydrologist

We are continuing the Meet Our People series where we put the spotlight on the people that make up eWater Group. We are an organisation focused on delivering smart, sustainable water management solutions in Australia and internationally.

Sudeep Nair is one of our hydrological experts who has been working within our organisation and supporting our partners and clients nationally, and internationally, for nearly two years now, in addition to his 10 years of experience in the field of water resources management and modelling.

Sudeep’s interest in water resources began when he started his postgraduate studies at IIT Kharagpur leading him to pursue his doctoral studies in Environmental Hydrology and Water Resources, and eventually academia. But the urge to work on real-world water resource problems and water modelling was too great, and Sudeep made the leap from research to eWater Group.

As one of our hydrologists, Sudeep works on Australia’s National Hydrological Modelling Platform, eWater Source, and MUSIC, and supports this country’s most prominent government and non-government organisations to find solutions to support sustainable water management.

“I get the opportunity to involve in both the development of the tools and their application to solve real-world water management problems. Moreover, I am part of the team which supports the adoption and use of our software products through various training programs.”

Acting as a bridge between our customers, who include hydrologists and water modellers, and the software developer team, Sudeep identifies, tests, and reviews their models to ensure there are working at optimum levels to deliver high-quality water data and information in real time.

“I don’t have a typical day [at eWater Group] which is why I like working at our organisation. The hydrology team is a small and cohesive team, and we get the opportunity to get involved in almost all activities such as the development of new functionalities in Source and MUSIC, software maintenance and support, modelling, supporting clients and partners, and training.”

While our hydrology team may be small, it has a huge impact. “As a key member in a small team, my suggestions and feedback are heard and valued. It feels like a family here in eWater. I am also given the opportunity to undertake various training to regularly update my skills and knowledge.”

Like any industry, we face many challenges in water management and delivering high-quality data and information to a growing audience in Australia and internationally. For eWater Group our focus is offering Australian governments, water experts and institutions here and abroad the highest of expertise, knowledge, and support.

For Sudeep, the challenge we face is the need for clarity amongst modellers regarding the selection of appropriate water modelling tool to address changing and emerging needs of water managers.

“eWater Source [the National Hydrological Modelling Platform] is different and is increasingly being adopted in Australia which enables uniformity and comparison, along with [our other modelling platform] MUSIC, which is already used widely in Australia for urban water modelling purposes.

eWater Source, and MUSIC, are constantly evolving tools, with more capabilities and functionalities added to our toolkit based on customer feedback and requests. It is this continued drive to deliver better support and services which “make eWater tools ready for assessing new water-related challenges in the wake of climate change and other pressures.”

Who are we?

eWater Group is owned by the Australian Federal, State and Territory governments to further develop Australia’s world-class modelling tools and to provide support and training nationwide and internationally.

Our organisation is comprised of three divisions – eWater Solutions, the Australian Water Partnership and the Mekong Water Solutions to deliver water management solutions for communities in Australia and overseas.

We also partner with the Australian Department of Foreign Affairs and Trade, and research groups and institutions to provide expertise and support for sustainable water management solutions in Australia and internationally, now and into the future.




Meet Our People – Daxa Bhudia, Software Developer

We are diverse, and experienced, and most importantly we have a strong heritage of supporting sustainable water management.

We are incredibly lucky to have an organisation with people like Daxa Bhudia, our Software Developer, who brings a wealth of knowledge and experience to eWater Group.

Daxa has worked in the IT industry in both Australia and internationally for over eight years, and at eWater she is responsible for working on Australia’s National Hydrological Modelling Platform, eWater Source.

Daxa’s love for software development and IT began early in the halls of her high school in Bhuj, India, and led her to complete her bachelor’s degree in IT. From there, Daxa worked across various domains including accounting, ERP systems, supply chain management, healthcare, logistics, petroleum, and manufacturing, before she entered the world of hydrology and science and joined eWater in 2022.

“I was amazed with the products developed at eWater that how it helps so much across the world for managing water resources and water quality.”          

“The region from where I come is very dry with low rainfall near to a salt desert in Kutch, [a district of Gujarat state in western India]. I have seen water crises in my childhood and heard stories from my parents about having to walk for so long in the morning just to get drinkable water. Even this is still the case in some of the regions in India.”

eWater Group is owned by Australian Federal, State and Territory governments to maintain and further develop Australia’s world-class modelling tools, and to provide support and training nationwide and internationally. The Group manages three divisions – eWater Solutions, Australian Water Partnership and Mekong Water Solutions – to deliver water management solutions for communities in Australia and overseas.

Daxa is a critical member of our eWater Solutions team which deliver eWater Source (Australia’s National Hydrological Modelling Platform), together with other water management tools and support, for our Australian government partners, water managers in the public, private and research sectors, and various other clients.

Daxa’s role includes working closely with our developers and hydrology teams to provide software development and hydrological modelling services that advance Australia’s world-class water resource modelling tools, and our expertise, for our partners in Australia and around the world.

Daxa enjoys the problem-solving aspect of her role at eWater and finding innovative solutions to persistent and new challenges.

“I enjoy working on complex software, learning about hydrology, and incorporating it into the software. I always look forward to coming to work as it challenges my ability and enables me to give 100 percent and do my best.”




International Women’s Day 2023

Our people are central to what we do here at eWater Group.

Supporting and empowering our people to deliver sustainable water management solutions is critical to our success, and that includes creating opportunities, and empowering our people to find solutions to increasingly changing environments both in Australia and overseas.

This year, we are marking International Women’s Day by supporting UN Women Australia’s theme: Cracking the Code: Innovation for a gender equal future.  

Michael Wilson, eWater Group CEO

eWater Group CEO, Michael Wilson says, “eWater Group is a passionate advocate and agent for gender equality and the empowerment of women. International Women’s Day gives our organisation and our employees the chance to celebrate achievements on gender equity and diversity more generally. We are an employer of choice and embrace and celebrate diversity in how we work as an organisation, and how we work with our partners, both in Australia and overseas.

“I am really proud of our people, who all support and empower each other to contest conventional ways of thinking and to innovate to strengthen our impact, including through the extraordinary work we are able to do to help communities in Australia – and in developing countries across the globe – manage their water more sustainably.”

eWater Group is owned by Australian federal, state, and territory governments to maintain and further develop Australia’s world-class water modelling tools, and to provide support and training nationwide and internationally. The Group manages three divisions – eWater Solutions, the Australian Water Partnership and Mekong Water Solutions – to deliver water management solutions for communities in Australia and overseas.

We asked our people to share their thoughts on what we, as a global community, can do to support innovation and technology for gender equality for women and girls in the water sustainability and management sector.

Dr Laura Beckwith, Mekong Coordinator, Australian Water Partnership

Innovations in technology are creating new opportunities for communication and connection but these opportunities are not equally available, according to Dr Beckwith.

“Worldwide, women and girls – as well as older people, people in rural areas and other marginalised groups– face additional barriers to access and engagement with technology, particular through internet connectivity – the so-called ‘digital divide’.”

“In the water sector, innovation and technology can provide many benefits to how we monitor, measure, manage and communicate about water, but there is a need to ensure that women and girls – and other marginalised groups– have a voice in shaping how water is used and managed. Participatory approaches to planning and decision-making can help to ensure that innovation in the water sector will foster sustainable and inclusive solutions.”

Lucy Chilver, Program Manager, Australian Water Partnership

For Lucy, creating more leadership roles for women and girls needs to be further encouraged as, “women can bring new and different perspectives to all kinds of problem-solving.  From their experiences in accessing and using water at a community level, women and girls often have a profound understanding of the challenges posed by insecure access to quality water, and so their involvement can improve the efficiency and effectiveness of water project outcomes.”

Juanita Moolman, Senior Hydrologist, eWater Solutions

As one of our most respected and senior hydrologists, Juanita Moolman, has been at eWater since 2012 where she has been instrumental in helping to build the capacity of future generations to meet the challenges that will be facing global water availability.

“As part of my role I have had the opportunity to train and mentor hydrologists from across the region as well as our own team and sharing my knowledge and experience with them is very rewarding for me.”

Praveeni Prematilleke, Senior Test Analyst, eWater Solutions

“I believe we can empower women in information technology by providing equal opportunities for both technical and leadership roles, including mentoring and providing support to booth their confidence.” 

Mukta Sapkota, Urban Hydrologist, eWater Solutions

A sustainable workforce requires diversity. Giving women and girls opportunities to consider hydrology, or other STEM roles, starts with education and creating opportunities to go into these fields as adults, as well as breaking down the barriers for current female hydrologists in the industry.

“I believe we need more women and girls in hydrology to maintain gender diversity for creating a healthy work environment at workplaces. We also need more women in higher management to foster gender equality and put forth women in leadership to ensure this principle is implemented.”

Samira Azadi, Hydrologist, eWater Solutions

 “We need to make sure we take the mystery out of hydrology. We need to show women and girls that hydrology is a fantastic field to work in and that you can take the theory and work in many places throughout the world.”

“I also believe it is important that we mentor and support women in our industry. I believe that is key to supporting each other to ensure diversity of thinking in our field.”

Daxa Bhudia, Software Developer, eWater Solutions

For Daxa the key to support more diversity in a workplace is to see more “gender-balanced workplaces, and more women in leadership roles. This improves workplace culture and leads to creative changes in industries.”

Sopheara Prom, Finance and Procurement Manager, Mekong Water Solutions

For Sopheara it is important to encourage women and girls to feel more supported within the industry; giving them opportunities to raise their voice and have their opinion heard in the water sector.

Channpisey Nop, Irrigation Engineer, Mekong Water Solutions

Channpisey is a real champion of support more women and girls into the water sector in Cambodia and in the life of society.

“The woman performs the role of wife, partner, organizer, administrator, director, re-creator, disburser, economist, mother, disciplinarian, teacher, health officer, artist, and queen in the family at the same time. Apart from it, woman plays a key role in the socio-economic development of society.”

“Globally, women have become engines for economic growth. Achieving gender diversity in enterprises is of critical importance to improving business outcomes. Women are often under-represented in the academic and professional fields of engineering, and not enough women have contributed as much as they should be able to the diverse fields of engineering historically and now.”

“For example, at Mekong Water Solutions, I am the only female engineer, so more work needs to be done to support more women and girls in engineering, but we are committed to doing that.”

“We need to encourage women and girls to feel supported to be innovative in the water space, need more value from people around them for their skills by providing more benefits for their hard work, encouraging them to believe in themselves.”

We celebrate and support International Women’s Day

Encouraging and inspiring words from the incredible people who work across the full spectrum of roles we have at eWater Group in Australia and internationally.

International Women’s Day is about celebrating the diverse skills and experience women bring to our communities, and workplace.

eWater Group is proud to support International Women’s Day and acknowledge and celebrate the contributions of our people make to our mission to support sustainable water management solutions for people and communities right across Australia and overseas.




Meet Our People – Laura Beckwith

The health and wellbeing of urban environments and the people who inhabit them continues to be a challenge for government and decision makers, private sector, and experts, now and into the future.

How we meet increasing demands for better water management and resources, as well as protect the local environment, is a conversation that eWater Group and our extraordinary, experienced experts are excited to be a part of.

The Australian Water Partnership, managed on behalf of the Department of Foreign Affairs and Trade (DFAT) as part of the eWater Group, plays a pivotal role in sharing and deploying Australian expertise in sustainable water management to improve water security in the Indo-Pacific region.  AWP is one of the Australian Government’s flagship initiatives in natural resource management and climate resilience, helping to tackle poverty and realise the Sustainable Development Goals in our region and globally. 

The importance of valuing different kinds of knowledge in water governance together with meeting our current and future needs is central to our resident Mekong Coordinator, Laura Beckwith, who represents our organisation in the region.

Laura Beckwith, Mekong Coordinator, AWP

Who is Laura Beckwith?

Laura isn’t new to the world of water governance and sustainable water management. She holds a PhD in International Development from the University of Ottawa in Canada, specialising in urban adaptation to climate change.

She has lived and worked in the Mekong Region since 2017, leading research on community responses to socio-ecological change in the Mekong Delta. In addition to this, she also brings more than 10 years’ experience in grant and relationship management in East Africa, Canada, and the UK.

With such a broad background, how did all roads lead to the Australian Water Partnership and the eWater Group?

After five years of living in East Africa and Canada, Laura wanted to take her PhD and apply it to Southeast Asia and how their communities were adapting to an ever-changing environment. This decision led her to Cambodia where she engaged with urban farmers in Phnom Penh to understand how they were impacted by urban expansion through wetland in-filling alongside environmental change, such as flooding, increase in temperature, and variability of storms as part of the regional Urban Climate Resilience in Southeast Asia (UCRSEA) project. Laura’s research highlighted the importance of urban wetlands to food security, livelihoods, and wastewater management.

Water is such a significant part of Cambodia’s identity, and with Phnom Penh being built on three major rivers, the sustainable management of water and its resources is critical. “Water is such an important part of the history of the city, you can’t work or study here, or even live here, without your work or life touching water one way or another; it influences the city.”

Your work at the Australian Water Partnership

Laura now supports our efforts in the Mekong region by providing a regional perspective and expertise on the ground including insights and challenges as well as managing projects and engaging with local government and water experts in country.  AWP will also work closely with Mekong Water Solutions, a new initiative also funded by DFAT aimed at establishing better water technical and multi-disciplinary project management skills within the Mekong region itself.

“I love the variety of the role, the challenges; I am doing different things every day. I love that I am working in the region in different contexts, including Cambodia and Vietnam and now I am having the opportunity to learn about the diversity and challenges of Laos. It is exciting.”

“It is exciting for me to be working for an organisation that is engaging with governments in a meaningful way. It is important that governments and local and national institutions are leading the way on conversations and responses to water resources and challenges facing the water sector.”

One invaluable insight for Laura was her recent engagement with local water experts who were appreciative of AWP’s technical support and collaborative approach, which was supporting their efforts to deliver successful water projects in the region.

It is this feedback that drives Australian Water Partnership and its experts to continue to do the work that they do; being represented in the region provides support to the success of our organisation but importantly to the protection of our most precious resource – water.

So how do we protect our water resources now and into the future?

For Laura, one of the many challenges we face right now is planning for a future we don’t know, and how we put in systems now for a tomorrow. “Global environmental change and particularly climate change is creating a lot of uncertainty which will challenge the way we use and manage water.” A challenge all humans, governments and institutions need to consider as demand for natural resources continues to grow.

Laura believes the Australian Water Partnership approach of working together with local government and institutions is the best way forward to have lasting change.




Understanding the water resources of the Ayeyarwady Basin, Myanmar

The Ayeyarwady River is Myanmar’s largest and most commercially important river but its water resources are not well understood.

With the support of the Australian Water Partnership, the Government of the Republic of the Union of Myanmar commissioned the first integrated assessment of the natural resources of the Ayeyarwady Basin. eWater lead the surface water assessment for the State of the Basin Assessment (SOBA).

The Ayeyarwady Basin

With an area of just over 675 000 km2, the Republic of the Union of Myanmar is the second largest country in South-East Asia, after Indonesia. 

The Ayeyarwady River starts in the Himalayas, flowing for approximately 2 000 km in a north-south direction through Central Myanmar. The river basin has a total area of 413,700 km2 and covers about 61% of Myanmar. About 5% of the Basin extends into the neighbouring countries of India (to the west) and China (to the east). 

The Ayeyarwady River Basin is dominated by a monsoonal rainfall regime, associated with the south-western Indian monsoon. It is also affected by convectional systems and cyclones from the Bay of Bengal. Groundwater flows to the streams and snowmelt from the northern regions are also important contributions to basin flows.  

The Ayeyarwady River Basin is still a relatively undeveloped basin. Like the majority of Myanmar, most of the Basin is characterized as rural, with agriculture the main use of water. 

Ayeyarwady River, view from Bupaya bagan (credit: tuanjai62/ Adobe Stock)

Project overview

The SOBA provides a baseline assessment of the basin’s water and other natural resources, from which future management options can be compared against.

eWater developed a preliminary baseline Source water system model for the Ayeyarwady Basin (north of the delta), from which a baseline assessment of the basin’s surface water resources was undertaken.

The model is run with historic climate data for 1982 to 2016, land use in 2014 and storage capacity in 2016. It represents agriculture, domestic, urban and hydropower water use.

For the first time, the baseline assessment gives water managers a description of the hydrology of the Ayeyarwady River Basin according to 5 Hydro-Ecological Zones and 13 sub-basins, significantly increasing the understanding of both water availability and water use in the basin. For example, in the figure below, we can see the different components that contribute to flow at the end of the system as an annual total and during the critical dry season, it shows how much water is provided by different sources and how much of this water is used or lost to evaporation.

Flow components at the end of the Ayeyarwady Basin, annually and in the dry season

The water system model is a first cut at drawing together the information required to adequately understand and simulate the complexities of the Ayeyarwady River Basin. The baseline model will be a key tool to support the future management of the basin’s water resources, making it possible to:   

  • Combine outputs from the model together with observed values, to provide an overall assessment of water availability and uses across the Ayeyarwady River Basin.  
  • Understand baseline water availability and use, to support the ongoing assessment of the Basin’s water resources and to examine possible future scenarios and possible implications, for example with climate change or increased agricultural use. 
  • Simulate components of the hydrological cycle at locations where observed values are not available. 
  • Identify information gaps and inform future data collection initiatives. 

Scoping Study

Following the completion of the SOBA, eWater was engaged to undertake a scoping study of potential development options for the mainstream of the Ayeyarwady River and tributary flows. The study was also supported by the Australian Water Partnership.

The scoping study sought to demonstrate how water resource models can be used to assess management scenarios and provide valuable outputs to support stakeholder consultation.

The surface water system model was adapted to allow it to provide information on the likely changes in the Ayeyarwady mainstream and tributaries from different development scenarios. The scoping model can assess the likely flow changes from different development options, to consider the impact on water dependent outcomes such as irrigation, hydropower production, surface water flow heights and and flood magnitude. It is not intended to evaluate specific development proposals.

The scoping model was used to compare a High Development Scenario of hydropower on the tributaries and some irrigation development in the Central Dry Zone against a baseline scenario. The baseline scenario included ‘current’ irrigation demand and hydropower dams representing 2000 megawatts of hydropower, it does not include some 30 irrigation storages where data was not available.

The results compared include:

  • Change in hydropower generation on an annual and seasonal basis, inter-annual variability was also assessed. 
  • Agriculture water use and availability assessed on an annual and inter-annual basis. 
  • An assessment of changes to hydrographs at Sagaing, Pyay and Monywa, including changes in flow volume as well as surface water level.

An example of the scoping model outputs is shown below. In this, dry season irrigation extraction under the baseline and high development scenarios are compared.

Dry season demand for water under the baseline and high development scenarios.

Capacity Building

eWater conducted face to face training programs to introduce water managers in Myanmar to the principles of hydrological modelling and the use of Source. The training used the new Ayeyarwady Source model, providing participants with hands-on experience in the use of the model.

eWater’s Geoff Davis presenting Source training in Myanmar



Strengthening Water Resources Management in Afghanistan

The Strengthening Water Resources Management in Afghanistan (SWaRMA) project is a two year collaboration between the governments of Afghanistan and Australia through the CSIRO.

eWater, in collaboration with the CSIRO has supported the initiative through:

  • Developing a Kabul Basin Model.
  • Developing a Whole-of-Afghanistan water availability model.
  • Capacity building in water resource modelling with eWater Source.
Panjshir valley in Eastern Afghanistan (credit:mbrand85/AdobeStock)

Kabul Basin Model

The Kabul River Basin is located in Eastern Afghanistan. It joins the Indus River in neighbouring Pakistan. Most inflows are generated from snow melt in the sub-basins of the Panjsher and Konar rivers, which are located high in the Hindu-Kush mountains, with their heavy snowfalls and many glaciers. The catchment is largely undeveloped, with only 6% of land used for cropping (FAO, 2010) and 1% urban. Kabul City is the largest urban area with a population of 4 million.

The model includes water demands for irrigated cropping, urban water, hydropower and the expected water demand from the Aynak mine. Minimum flow requirements are included to meet environmental needs. Urban demands are only modelled for Kabul City, as it is the only urban demand large enough to have an impact on downstream water supply. After consultation with the Ministry of Energy And Water (MEW), demands for Kabul were estimated as 120 L per person per day. Water demand on groundwater is factored into water use for Kabul City, since it is known that over time the reliance on groundwater for Kabul City will change to using surface water from the proposed Shatoot and/or Gulbahar dams. The model is conceptualised to provide for this change in the future.

The Source model for the Kabul Basin provides a broad scale representation of the Kabul River basin and its key water demand and supply elements. It serves as a tool for capacity building, including demonstrating the use of models to assess different water management scenarios. The model is not currently intended to be applied as an operational model of the system. However, it has been conceptualised to provide a framework representing the key features which can be extended with further information regarding management rules and requirements. 

This model has been handed over to the Ministry of Energy and Water, so they can continue to develop the model and use it to more detailed analysis and water resource planning and management. 

Integrated Source model for the Kabul River Basin
Integrated Source model for the Kabul River Basin

Rapid assessment of whole of Afghanistan water availability

The Source platform makes it possible to explore water availability across multiple scales, from the scale of sub-catchment tributary to major river basin scale to the whole country. A whole of Afghanistan Source model was built to undertake a rapid assessment of water availability in Afghanistan’s five major river basins. Due to limited historical data, the assessments were based on daily global data inputs for the period 2006-2016 and long-term monthly average flows from pre-1980.

Afghanistan is a land locked country and shares its river basins with its neighbouring countries. The use of global input sets helped overcome potential issues of sourcing this data from these other countries. However, a lack of available observed flow sites within these countries meant that neighbouring flow contributions could not be calibrated.

Due to lack of observed flows, it was only possible to calibrate against historical average monthly flows. As such the model can only be considered to represent long-term average conditions across Afghanistan and can only give an indicative assessment of water availability. In time, the model can be further developed as data and knowledge improve.

The rapid assessment provides a much needed baseline tool and information source for water managers. The figure below is an example of the outputs available from the model, it shows the area-weighted outflow per sub-catchment, providing an indication of the distribution of water availability across Afghanistan. It shows that the higher mountain areas are the main source of flows, particularly the Hindu Kush mountains, which receives significant snow in winter.

Area weighted outflows per sub-catchment in Afghanistan

References

FAO (2010) Land cover of the Islamic Republic of Afghanistan. Food and Agriculture Organization of the United Nationshttps://dwms.fao.org/~draft/lc_2010_en.asp (accessed 12/12/2018) 


Learn more about SWaRMA here





Partnering with the Mekong River Commission

eWater has worked with the Mekong River Commission (MRC) since 2013. 

Established in 1995 under the Mekong Agreement. The MRC is an inter-governmental agency working with the governments of Cambodia, Laos, Thailand and Vietnam with the goal of jointly managing the shared water resource and the sustainable development of the Mekong River.

Since 2013, eWater has partnered with the MRC on several projects.

The Mekong River Luang Prabang, Laos

Modelling in the Mekong River Basin

Beginning in 2013, eWater and the MRC worked together to trial the adoption of Source in the Mekong. This included developing a plugin to convert the MRC’s existing IQQM (Integrated Quantity and Quality Model) models to Source. Initially, work focused on the 3C catchment, and was progressively expanded to the whole of the Mekong.

eWater Source models are now used to simulate flows, sediment loads, nutrient levels, hydropower production, and agricultural and industrial water use to assess the impacts of water resources developments and to assess national water resource development plans from a basin-wide perspective.

Over the years, eWater has provided capacity building and technology transfer focusing on hands-on training and technical support to the Mekong River Commission Secretariat (MRCS) and MRC Member Countries (Cambodia, Laos, Thailand and Vietnam). 

Mekong River Council Study

The MRC Council Study is the first water resource study of this scale for the Mekong Basin.  In 2018-19, eWater contributed to the MRC Council Study using Source to integrate information and existing SWAT basin models via plugins. 

MRC Procedures for Water Use Monitoring (PWUM)

eWater implemented pilot projects to test the Procedures for Water Use Monitoring in Laos, Thailand and Cambodia.  The MRC Water Use Monitoring procedures provide for the visualisation and analysis of trade-offs in different water management scenarios.  The implementation of the pilot projects using water resource modelling is a major step towards a basin-wide water use monitoring in the Mekong Basin.

Data and information systems upgrade

In May 2019, eWater was invited by the MRC Secretariat to support a two-year initiative to reinvigorate its data, information, modelling, forecasting and communication systems to provide enhanced and timely information to the public and MRC Member Countries. 

eWater’s involvement was funded by the Australian Government, through the Department of Foreign Affairs and Trade.

The MRC’s systems upgrade covers data collection and acquisition, data and information management, data analysis and assessment, and data and information reporting and communication. The initiative will support the Secretariat to:

  • provide enhanced and timely information to the public and MRC Member Countries
  • implement key responsibilities, such as assessing the state of the Basin and tracking development in the Basin
  • respond to emerging issues, such as changes in flow regimes
  • strengthen its role as a regional knowledge hub. 

Working closely with the Secretariat and other Australian experts, we prepared a concept design for the systems upgrade, it will see a transformation in the way the Secretariat collects, analyses, uses and communicates water information. The design concept was approved by the MRC Joint Committee in November 2019.

Other important aspects of the support include training in the use of Source for water management planning and the integration of operations and flood forecasting.  In partnership with water agencies and regional modelling groups, we are also helping establish a Community of Practice and Best Practice Guidelines. Relationships with key academic and research stakeholders in the region have also been strengthened. 

The project has included close collaboration with the MRC Secretariat and experts from the Australian Bureau of Meteorology, Geoscience Australia and the Murray-Darling Basin Authority, including review of existing systems, drafting of recommendations and presenting to members of the MRC and MRC Secretariat on the approaches used in Australia.

The project features as a success story in the MRC 2019 Annual Report.




Integrated Water Resources Management in Lao PDR

Water is essential to life and culture in the People’s Democratic Republic of Lao. More than third of GDP and 75% of employment comes from subsistence agriculture, which is heavily dependent on rainfall and Lao’s rivers.

Traditionally, the People’s Democratic Republic of Lao (Lao PDR) was considered a water rich country, but increasing demand for water, especially in the dry season is putting pressure on water resources. Climate change is also affecting the region, with water quality impacted by rising temperatures and water infrastructure at risk from increased flash flooding.

In response, the Government of Lao PDR is implementing a series of water reforms, including developing a National Water Resources Strategy and Action Plan 2016-2020 and major amendments to the Water and Resources Law were approved in 2017. The new law focuses on better protection of water resources and sustainable use to support national economic development.

Supporting these reforms is the World Bank funded Mekong Integrated Water Resource Management (MIWRM) program, which seeks to establish good examples of integrated water resources management practice at the local, regional and river basin scales.

Landscape view over Xe Don river in Pakse, Laos (credit: Marek/AdobeStock)

The project

eWater was engaged under the MIWRM program to support the Lao PDR Natural Resources and Environment Research Institute (NRERI) Hydrological Modelling Unit to build its capability to develop and apply water models for water resource assessment, sustainable water management and to support policy and investment decision making.

Surface water resource models for four basins; Xe Bang Fai, Xe Bang Hieng, Xe Don and Xe Kong were built and calibrated using the eWater Source platform. The models were used to evaluate:

  • total water availability from surface runoff
  • inter-basin water transfers
  • water demands and consumption for domestic, industrial and agriculture users
  • hydropower operations and production.

Water supply and demand were summarised on a monthly basis and the impacts of water resource development on natural flow patterns were evaluated.

In addition, to understand the relative impacts of different water resources development options in the Xe Kong basin, four development scenarios were assessed:

  1. current (2017) conditions
  2. hydropower development
  3. irrigation development
  4. combined development.

Each scenario was evaluated under historical climate conditions and a climate change scenario. This initial assessment seeks to demonstrate the power modelling can bring to the decision-making process and inform the development of a later detailed scenario assessment.

Overcoming data constraints

Traditionally, good water modelling relies on high-quality, measured data. However, such data is often uncommon in countries such as Lao PDR. To address this, much of the data used in the modelling came from global, remotely sensed data sets, calibrated against the limited measured data.

Despite the limited measured data, good calibration was achieved in all four basins, demonstrating that the Source model platform is an effective tool for low-data environments. Importantly, Source has the ability to incorporate additional data as it becomes available, progressively increasing reliability and accuracy over time. 

Implementation

The project has helped to increase the capacity of water managers in Lao PDR to build and use water models. The four models build for the project give water managers vital information and new tools for responding to emerging water management challenges, such as:

  • annual and seasonal water availability
  • annual and seasonal water flow patterns, and how these vary from natural conditions
  • annual and seasonal water usage
  • actual and potential water shortages
  • hydropower demands and impacts on flow patterns and water balance

Example outputs from the model are shown in the figures below, they provide easy to understand, practical information to guide decision making.

Summary of basin characteristics.
NB: For Xe Bang Fai the installed capacity represents the NamTheun 2 hydropower project, which is located outside of the basin and diverts water into the basin.
Summary of average annual water demands and the deficit in supply (represented as negative values) for the four basins.

Capacity building 

Building the capability of the NRERI Hydrological Modelling team was a core focus of the project. eWater provided tailored Source training and worked closely with the team in building the four models and developing the scenarios to be tested.

Participants at a workshop to develop scenarios for the Xe Kong basin. Attendees were from NRERI, other Lao PDR government agencies, the World Bank and eWater




Arghandab Integrated Water Resource Management Project – Afghanistan

Decades of war and political instability have decimated most of Afghanistan’s water infrastructure and reduced the technical capacity of the water resources sector. 

In response, the Government of the Islamic Republic of Afghanistan is undertaking a range of initiatives to invest in new infrastructure,  improve water resource management and increase capability. One such initiative is the Arghandab Integrated Water Resource Management Project. 

The Asian Development Bank (ADB) is supporting the Afghanistan Government to scope the Arghandab Integrated Water Resource Management Project. The project will finance infrastructure to increase water resources for irrigated agriculture, urban water supply, and power generation for Afghanistan’s second largest city Kandahar and surrounding areas.

Farmland in Kandahar (credit Paul/AdobeStock)

Using Source to support infrastructure investment

eWater was invited to provide technical assistance to the project, through a rapid hydrologic study of the Arghandab River and capacity building through training in the use of the Source modelling platform. eWater’s involvement was funded by the Australian Department of Foreign Affairs and Trade (DFAT). 

eWater, in collaboration with modellers in Afghanistan built a baseline Source model for the Arghandab River Basin. The model is used to generate inflows to Dahla Dam for the period 2002 to 2016. 

The model allows different multi-sector allocation scenarios for irrigation, urban water supply, hydropower and downstream flows to be compared against each other, providing key inputs to support the decision-making process. The potential impacts of climate change on the different options is considered by modelling different inflow scenarios. 

Overcoming data constraints

Water models typically rely on observed measurements for flow, rainfall, evaporation etc. However, such data is very limited in Afghanistan.  A combination of data from historic sources and remotely sensed sources were evaluated and used to develop the Source model. The hydrology is simulated using the GR4J and GR4JSG hydrological models which, respectively, represent direct rainfall-runoff and snow melt processes. The hydrology is calibrated to historic average monthly observed values.

Given that this is a rapid study where limited time is available to explore alternate sources of data such as some of the globally generated flow sequences used for detailed climate change modelling, an expedient approach to calibrating the model was adopted.  This was to assume stationarity in average monthly flows and calibrate to observed monthly average discharge values despite differences in dates between rainfall and discharge. This averaging impacts on the predictive ability of the model for extreme events such as flash flooding associated with sudden high rainfall since extreme peaks in flows can happen at a sub-monthly scale. 

Nonetheless, the model significantly increases the information available to water managers to understand current flows and support initial investigations into the impact of changes in dam size and demand over time and with climate change. Examples of the model outputs are shown below. 

Monthly flows

Flows are highly variable, particularly during the wet season. Monthly flows are lowest in October and November, and highest in April. The figure below shows the possible range in total monthly flows predicted by the Source model, with the grey area representing modelled minimum and maximum flows for each month. The modelled period 2002 – 2016 includes the drought years of 2010  2016 as well as extreme flows observed in 2007. Mean and median flows are also indicated.

Shows the total modelled monthly inflows to the Dahla Reservoir (2002 – 2016). Flows start increasing in December, peaking in April. Flows start falling through June and July, with virtually no flow from August to November.
Range in total modelled monthly inflows to the Dahla Reservoir (2002 – 2016)

Impact of climate change on flows

The projected impact of changes in temperature and rainfall on average total monthly inflows to Dahla Dam, between the baseline period (2002 – 2016) and future 2050 are illustrated in Figure X. Expected higher temperatures will cause snow to melt sooner in the season with an increase in flow in March and less water available from May resulting in a longer low flow season.

Average total monthly flow volumes (Baseline 2002 – 2016 and 2050)



River Basin Models and Water Sharing Policy in the upper Godavari Sub-Basin, Maharashtra, India

Resolving tension between farmers upstream and downstream over water allocations in the upper Godavari River in Maharashtra was the focus of a four year engagement in the west Indian State by eWater.

The Maharashtra and New South Wales governments signed a Memorandum of Understanding for cooperation across a wide range of issues.  Under the provisions of this MOU, the Government of Maharashtra in partnership with the NSW Department of Industry, Lands and Water (then) engaged eWater to provide training, technology transfer, and ongoing support in the use of Australian river modelling technology to Maharashtra.

eWater assisted the Maharashtra Department of Water Resources to develop a modelling framework to test water management options and to support the development of an integrated water resources management (IWRM) plan for the Upper Godavari sub-basin.

Basin overview

The Godavari River basin is India’s second largest river basin, it covers 50% of the land area of Maharashtra state.  It is a complex system, with 20 dams. Water use includes irrigated crops, industry and domestic use in urban and rural areas, including drinking water.  Water availability and equitable distribution of water within the sub-basin are major public concerns that have resulted in legal challenges.

Within the sub-basin there is significant spatial and inter-annual variability in monsoon rainfall. Typically, runoff is generated in the high-rainfall, high-elevation areas of the sub-basin with little runoff generation in the area near the large Paithan irrigation dam at the outlet of the Upper Godavari. 

Paithan Dam, after upstream monsoon rains.

Project outcomes

The project had two primary outputs, a calibrated Source model for the Upper Godavari Sub-Basin and building the capacity of the Maharashtra Department of Water Resources.

eWater, in collaboration with modellers from the Maharashtra Department of Water Resources set-up and calibrated a Source model for the Upper Godavari sub-basin. The model was used to evaluate water management options to improve equitable access to water across the sub-basin. Model outputs were used to inform the integrated water resource management plan

eWater and the NSW Department of Industry, Lands and Water used outputs from the river basin models to establish and focus communication and discussion with the Maharashtra Water Resources Department about improved water management policies and governance processes to implement the objectives of the Maharashtra State Water Policy. With a key focus being improving targeted communications to farmers in the basin.

eWater delivered a comprehensive training program in the use of Source, with customised training based on the Upper Godavari model. Training was held in India and Australia, both involved a combination of hands-on desktop learning and field visits to better understand the linkages between models and on-ground water management. 

More broadly, the project brought together water managers, academics and researchers in the Upper Godavari sub-basin to establish a community of practice that allows lessons and experiences to be shared across other sub-basins in Maharashtra.

Delegates learning about modern irrigation technology in the Murray-Darling Basin.

Award winning project

The success of the project was recognized at India Water Week 2019, when the national Minister for Jal Shakti (Water Resources) presented an award to the Maharashtra Water Resources Department (WRD) for using eWater Source modelling framework to achieve equitable distribution of water in the Upper Godavari Sub-basin.

Left to right: Mr Arun Ghate (IWRM team GMIDC), Mr Jasing Hire (IWRM team GMIDC), Mr Ajay Kohirkar (Executive Director GMIDC), Mr Dilip Tawar (Chief Engineer GMIDC), Mr Rajendra Pawar (Secretary Command Area Development, WRD), Ms. Sonali Nagargoje (IWRM team GMIDC), Mr. Avirat Chavan (IWRM team GMIDC)



Using Australian water tools to develop new drought metrics for Cambodia

eWater, Geoscience Australia (GA) and the Australian Bureau of Meteorology (BOM) collaborated to pilot using space-based data to forecast streamflows and water availability.

With the support of the Australian Water Partnership, eWater, GA and the BOM worked with the United Nations Economic and Social Commission for the Asia Pacific (UNESCAP) to develop new metric’s for the their ‘Regional Cooperative Mechanism for Drought Monitoring and Early Warning in Asia and the Pacific’ (the Regional Drought Mechanism)

The project integrated three leading Australian tools for water management:

  • Australia’s National Hydrology Modelling Platform – eWater Source
  • GA’s Open Data Cube for accessing and managing space-based data
  • the BOM’s streamflow forecasting tools

The pilot project integrated the three tools, to develop streamflow and water availability forecasts from space-based data. Traditionally, such information requires significant on-ground data and complex analysis tools. The pilot highlights the potential of the integrated suite of tools to significantly increase the information available to water and agricultural managers and farmers to anticipate and plan for drought conditions.

Further, the use of Open Data Cube technology enabled many Source model inputs to be generated automatically, reducing the time to build the model, potentially making modelling more accessible to water managers.

The information was made available in a relatively simple format and accessed through mobile technology via https://escap.ewater.org.au/

Read more

As this image shows, water levels in Cambodia are highlighly variable. Metrics such as those produced in the pilot provide more information to help Cambodian water managers and users adapt. (credit: simoscalise/ Adobe Stock)